350 resultados para Heat capacity
Resumo:
A new scaling analysis has been performed for the unsteady natural convection boundary layer under a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages including an early stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as numerical results. Earlier scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scales for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency. However, those scalings performed very well with Rayleigh number and aspect ratio dependency. In this study, a modifed Prandtl number scaling has been developed using a triple-layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the new scaling performs considerably better than the previous scaling.
Measuring creative potential: Using social network analysis to monitor a learners' creative capacity
Resumo:
Recent studies suggest that meta-evaluation can be valuable in developing new approaches to evaluation, building evaluation capacities, and enhancing organizational learning. These new extensions of the concept of meta-evaluation are significant, given the growing emphasis on improving the quality and effectiveness of evaluation practices in the South Asian region. Following a review of the literature, this paper presents a case study of the use of concurrent meta-evaluation in the four-year project Assessing Communication for Social Change which developed and trialled a participatory impact assessment methodology in collaboration with a development communication Non-government organization (NGO) in Nepal. Key objectives of the meta-evaluation included to: continuously develop, adapt and improve the impact assessment methodology, Monitoring and Evaluation (M&E) systems and process and other project activities; identify impacts of the project; and build capacities in critical reflection and review. Our analysis indicates that this meta-evaluation was essential to understanding various constraints related to the organizational context that affected the success of the project and the development of improved M&E systems and capacities within the NGO. We identified several limitations of our meta-evaluation methods, which were balanced by the strengths of other methods. Our case study suggests that as well as assessing the quality, credibility and value of evaluation practices, meta-evaluations need to focus on important contextual issues that can have significant impacts on the outcomes of participatory evaluation projects. They include hierarchical organizational cultures, communication barriers, power/knowledge relations, and the time and resources available. Meta-evaluations also need to consider wider issues such as the sustainability of evaluation systems and approaches.
Numerical and experimental studies of cold-formed steel floor systems under standard fire conditions
Resumo:
Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.
Resumo:
The Teaching Teachers for the Future (TTF) project is a unique nationally significant project funded by the Australian Government through the Department of Employment, Education and Workplace Relations (DEEWR, Au$8.8 million) and the Information and Communication Technology Innovation Fund (ICTIF). This 2011-2012 project has ambitiously attempted to build the ICT education (ICTE) capacity of the next generation of Australian teachers through its focus on pre-service teachers, teacher educators and the new Australian Curriculum. This paper will provide an overview of the project including a description of its genesis in a changing educational and political landscape, its structure and operations, its grounding in contemporary theory, the research opportunities it has engendered and its tangible outcomes.
Resumo:
Extreme cold and heat waves, characterised by a number of cold or hot days in succession, place a strain on people’s cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987–2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave’s timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the ninety-fifth to ninety-ninth percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for cold or hot temperatures.
Resumo:
Divalent cobalt ions (Co2+) have been shown to possess the capacity to induce angiogenesis by activating hypoxia inducible factor-1α (HIF-1α) and subsequently inducing the production of vascular endothelial growth factor (VEGF). However, there are few reports about Co-containing biomaterials for inducing in vitro angiogenesis. The aim of the present work was to prepare Co-containing β-tricalcium phosphate (Co-TCP) ceramics with different contents of calcium substituted by cobalt (0, 2, 5 mol%) and to investigate the effect of Co substitution on their physicochemical and biological properties. Co-TCP powders were synthesized by a chemistry precipitation method and Co-TCP ceramics were prepared by sintering the powder compacts. The effect of Co substitution on phase transition and the sintering property of the β-TCP ceramics was investigated. The proliferation and VEGF expression of human bone marrow mesenchymal stem cells (HBMSCs) cultured with both powder extracts and ceramic discs of Co-TCP was further evaluated. The in vitro angiogenesis was evaluated by the tube-like structure formation of human umbilical vein endothelial cells (HUVECs) cultured on ECMatrix™ in the presence of powder extracts. The results showed that Co substitution suppressed the phase transition from β- to α-TCP. Both the powder extracts and ceramic discs of Co-TCP had generally good cytocompatibility to support HBMSC growth. Importantly, the incorporation of Co into β-TCP greatly stimulated VEGF expression of HBMSCs and Co-TCP showed a significant enhancement of network structure formation of HUVECs compared with pure TCP. Our results suggested that the incorporation of Co into bioceramics is a potential viable way to enhance angiogenic properties of biomaterials. Co-TCP bioceramics may be used for bone tissue regeneration with improved angiogenic capacity.
Resumo:
This paper describes a capacity building process undertaken within the HIV/AIDS prevention project of the Adventist Development and Relief Agency (ADRA) in the Solomon Islands. ADRA HIV/AIDS has recently reoriented its project structure, moving beyond its awareness raising approach to incorporate health promotion frameworks, theories, strategies and assumptions. These have been used to inform project practice in project planning, delivery and evaluation. This paper shares what has worked and not worked in the capacity building process, including a project evaluation of the initial HIV/AIDS awareness raising project and the application of a number of capacity building strategies, including utilising a volunteer Australian Youth Ambassador for Development (AYAD) funded by the Australian Agency for International Development (AusAID). Existing and new projects are outlined. The underlying theme is that any capacity building exercise must include structural support (e.g. management, national frameworks) to ensure the incorporation of new initiatives and approaches. With time this enables ownership by counterparts and external partnerships to develop. The presence of an AYAD volunteer has been an effective strategy to achieve this. Reflections from the evaluators, the AYAD volunteer and the HIV/AIDS team are included.
Resumo:
It is of great importance to develop multifunctional bioactive scaffolds, which combine angiogenesis capacity, osteostimulation, and antibacterial properties for regenerating lost bone tissues. In order to achieve this aim, we prepared copper (Cu)-containing mesoporous bioactive glass (Cu-MBG) scaffolds with interconnective large pores (several hundred micrometer) and well-ordered mesopore channels (around 5 nm). Both Cu-MBG scaffolds and their ionic extracts could stimulate hypoxia-inducible factor (HIF)-1a and vascular endothelial growth factor(VEGF) expression in human bone marrow stromal cells(hBMSCs). In addition, both Cu-MBG scaffolds and their ionic extracts significantly promoted the osteogenic differentiation of hBMSCs by improving their bone-related gene expression (alkaline phosphatase (ALP), osteopontin(OPN) and osteocalcin (OCN)). Furthermore, Cu-MBG scaffolds could maintain a sustained release of ibuprofen and significantly inhibited the viability of bacteria. This study indicates that the incorporation of Cu2þ ions into MBG scaffolds significantly enhances hypoxia-like tissue reaction leading to the coupling of angiogenesis and osteogenesis. Cu2þ ions play an important role to offer the multifunctional properties of MBG scaffold system. This study has demonstrated that it is possible to develop multifunctional scaffolds by combining enhanced angiogenesis potential, osteostimulation, and antibacterial properties for the treatment of large bone defects.
Resumo:
Objective: To assess the symptoms of heat illness experienced by surface mine workers. Methods: Ninety-one surface mine workers across three mine sites in northern Australia completed a heat stress questionnaire evaluating their symptoms for heat illness. A cohort of 56 underground mine workers also participated for comparative purposes. Participants were allocated into asymptomatic, minor or moderate heat illness categories depending on the number of symptoms they reported. Participants also reported the frequency of symptom experience, as well as their hydration status (average urine colour). Results: Heat illness symptoms were experienced by 87 and 79 % of surface and underground mine workers, respectively (p = 0.189), with 81–82 % of the symptoms reported being experienced by miners on more than one occasion. The majority (56 %) of surface workers were classified as experiencing minor heat illness symptoms, with a further 31 % classed as moderate; 13 % were asymptomatic. A similar distribution of heat illness classification was observed among underground miners (p = 0.420). Only 29 % of surface miners were considered well hydrated, with 61 % minimally dehydrated and 10 % significantly dehydrated, proportions that were similar among underground miners (p = 0.186). Heat illness category was significantly related to hydration status (p = 0.039) among surface mine workers, but only a trend was observed when data from surface and underground miners was pooled (p = 0.073). Compared to asymptomatic surface mine workers, the relative risk of experiencing minor and moderate symptoms of heat illness was 1.5 and 1.6, respectively, when minimally dehydrated. Conclusions: These findings show that surface mine workers routinely experience symptoms of heat illness and highlight that control measures are required to prevent symptoms progressing to medical cases of heat exhaustion or heat stroke.
Resumo:
In a globalised world, it makes sense to examine our demands on the landscape through the wide-angle lens of ecological footprint analysis. However, the important impetus towards a more localised societal system suggests a review of this approach and a return to its origins in carrying capacity assessment. The determination of whether we live within or beyond our carrying capacity is entirely scalar, with national, regional and local assessments dependent not only on the choices of the population but the capability of a landscape - at scale. The Carrying Capacity Dashboard, an openly accessible online modelling interface, has been developed for Australian conditions, facilitating analysis at various scales. Like ecological footprint analysis it allows users to test a variety of societal behaviours such as diet, consumption patterns, farming systems and ecological protection practices; but unlike the footprint approach, the results are uniquely tailored to place. This paper examines population estimates generated by the Carrying Capacity Dashboard. It compares results in various scales of analysis, from national to local. It examines the key behavioural choices influencing Australian carrying capacity estimates. For instance, the assumption that the consumption of red meat automatically lowers carrying capacity is examined and in some cases, debunked. Lastly, it examines the implications of implementing carrying capacity assessment globally, but not through a wide angle lens; rather, by examining the landscape one locality at a time.