137 resultados para Growth Factors
Resumo:
The peritubular zone of the rat testis has an extensive extracellular matrix (ECM). Fibronectin (FN) is distributed primarily in the basal lamina of the seminiferous tubule boundary tissue and is synthesized by peritubular myoid cells. Several extracellular changes are mediated by growth factors and these changes occur at the time of hormone mediated testicular development, particularly in the peritubular zone. The effects of serum or dibutyryl cyclic AMP (cAMP) on FN production by the mesenchymal peritubular myoid cells were evaluated. Rats of various ages (10, 15, 20, 40 and 80 days) were employed for immunofluorescent localization of rat testicular FN in frozen sections. In all age groups tested, FN was primarily present in a broad layer around each seminiferous tubule, and blood vessel, and in variable distribution throughout the interstitial stroma. By day 20 there was no clear distinction in FN staining between the peritubular zone and the interstitial tissue. This indicates an involvement of FN in the ECM developments which occur in the peritubular zone of the testis at this time. The peritubular myoid cells were isolated from 20-22 day old rat testis and cultured on glass coverslips. These cells were grown to confluence with 10% fetal calf serum (FCS) in medium until day 4 and then subcultured to have secondary monocultures maintained with or without serum. By means of immunofluorescence and cytochemistry using avidin-biotin peroxidase complex it was observed that peritubular myoid cells were positive for FN and most of the FN was localized in the perinuclear region. Subcultured peritubular myoid cells maintained for 4 days in medium containing FCS developed an extensive interconnecting FN matrix. In the presence of 0.5 mM cAMP in culture, FN became localized along the filamentous process of peritubular myoid cells and more prominently in the areas of triangulated multi-cell aggregates as well as on the surface of the contracted small spherical cells. The addition of cAMP in the presence of FCS, also caused a noticeable change in the staining pattern; FN was detected along the filamentous process developing into a complex network of cells encased in an extensive matrix. It would appear that the translocation of FN in the cytoplasmic extensions of peritubular myoid cells may be a direct consequence of morphological changes associated with metabolic regulation of cAMP. This may also be related to the puberty associated development of in vivo changes in the ECM produced by peritubular myoid cells.
Resumo:
The role of vascularization in 3-D tissue engineering was studied. Mouse fat, angiogenic growth factors, adult human stem cells and fat tissue have been inserted and subsequent tissue growth was monitored. Human fat grafts or human lipoaspirates in SCID mouse chambers induced mouse fat generation at 6 weeks. Tissue engineering models utilizing intrinsic vascularization have major advantages including rapid and appropriate vascularization of new tissues.
Resumo:
PURPOSE. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. METHODS. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone-based scaffold plus 0.54μg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. RESULTS. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. CONCLUSION. The results of this study demonstrate that rhBMP-2 plus PCL- based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Resumo:
Introduction Well-designed biodegradable scaffolds in combination with bone growth factors offer a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a large preclinical animal model. Methods Twelve sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion assessments were performed via high resolution clinical computed tomography and histological evaluation were undertaken at six (n=6) and twelve (n=6) months post-surgery using the Sucato grading system (Sucato et al. 2004). Results The computed tomography fusion grades of the 6- and 12- months in the rhBMP-2 plus PCL- based scaffold group were 1.9 and 2.1 respectively, in the autograft group 1.9 and 1.3 respectively, and in the scaffold alone group 0.9 and 1.17 respectively. There were no statistically significant differences in the fusion scores between 6- and 12- month for the rhBMP plus PCL- based scaffold or PCL – based scaffold alone group however there was a significant reduction in scores in the autograft group. These scores were seen to correlate with histological evaluations of the respective groups. Conclusions The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post-surgery.
Resumo:
An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.
Resumo:
Epithelial to mesenchymal transition (EMT) is considered an important mechanism in tumor resistance to drug treatments; however, in vivo observation of this process has been limited. In this study we demonstrated an immediate and widespread EMT involving all surviving tumor cells following treatment of a mouse model of colorectal liver metastases with the vascular disruptive agent OXi4503. EMT was characterized by significant downregulation of E-cadherin, relocation and nuclear accumulation of b-catenin as well as significant upregulation of ZEB1 and vimentin. Concomitantly, significant temporal upregulation in hypoxia and the pro-angiogenic growth factors hypoxia-inducible factor 1-alpha, hepatocyte growth factor, vascular endothelial growth factor and transforming growth factor-beta were seen within the surviving tumor. The process of EMT was transient and by 5 days after treatment tumor cell reversion to epithelial morphology was evident. This reversal, termed mesenchymal to epithelial transition (MET) is a process implicated in the development of new metastases but has not been observed in vivo histologically. Similar EMT changes were observed in response to other antitumor treatments including chemotherapy, thermal ablation, and antiangiogenic treatments in our mouse colorectal metastasis model and in a murine orthotopic breast cancer model after OXi4503 treatment. These results suggest that EMT may be an early mechanism adopted by tumors in response to injury and hypoxic stress, such that inhibition of EMT in combination with other therapies could play a significant role in future cancer therapy.
Resumo:
This thesis has developed an innovative technology, electrospraying, that allows biodegradable microparticles to deliver pharmaceuticals that aid bone regeneration. The establishment, characterisation and optimisation of the technique are a step forward in developing an affordable and safe alternative to the products used currently in the clinical setting for the treatment of musculoskeletal disorders. The researcher has also investigated electrospraying as a coating technique on biodegradable structures that are used to replace damaged tissues, in order to provide localised and efficient drug delivery in the site of the defect to help tissue reconstruction.
Resumo:
Carcinoma ex pleomorphic adenoma (Ca ex PA) is a carcinoma arising from a primary or recurrent benign pleomorphic adenoma. It often poses a diagnostic challenge to clinicians and pathologists. This study intends to review the literature and highlight the current clinical and molecular perspectives about this entity. The most common clinical presentation of CA ex PA is of a firm mass in the parotid gland. The proportion of adenoma and carcinoma components determines the macroscopic features of this neoplasm. The entity is difficult to diagnose pre-operatively. Pathologic assessment is the gold standard for making the diagnosis. Treatment for Ca ex PA often involves an ablative surgical procedure which may be followed by radiotherapy. Overall, patients with Ca ex PA have a poor prognosis. Accurate diagnosis and aggressive surgical management of patients presenting with Ca ex PA can increase their survival rates. Molecular studies have revealed that the development of Ca ex PA follows a multi-step model of carcinogenesis, with the progressive loss of heterozygosity at chromosomal arms 8q, then 12q and finally 17p. There are specific candidate genes in these regions that are associated with particular stages in the progression of Ca ex PA. In addition, many genes which regulate tumour suppression, cell cycle control, growth factors and cell-cell adhesion play a role in the development and progression of Ca ex PA. It is hopeful that these molecular data can give clues for the diagnosis and management of the disease.
Resumo:
Significance Reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and peroxynitrite are generated ubiquitously by all mammalian cells and have been understood for many decades as inflicting cell damage and as causing cancer by oxidation and nitration of macromolecules, including DNA, RNA, proteins, and lipids. Recent Advances A current concept suggests that ROS can also promote cell signaling pathways triggered by growth factors and transcription factors that ultimately regulate cell proliferation, differentiation, and apoptosis, all of which are important hallmarks of tumor cell proliferation and angiogenesis. Moreover, an emerging concept indicates that ROS regulate the functions of immune cells that infiltrate the tumor environment and stimulate angiogenesis, such as macrophages and specific regulatory T cells. Critical Issues In this article, we highlight that the NADPH oxidase family of ROS-generating enzymes are the key sources of ROS and, thus, play an important role in redox signaling within tumor, endothelial, and immune cells thereby promoting tumor angiogenesis. Future Directions Knowledge of these intricate ROS signaling pathways and identification of the culprit NADPH oxidases is likely to reveal novel therapeutic opportunities to prevent angiogenesis that occurs during cancer and which is responsible for the revascularization after current antiangiogenic treatment.
Resumo:
There is strong current interest in the use of biodegradable scaffolds in combination with bone growth factors as a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a preclinical ovine thoracic spine. The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post surgery.
Resumo:
The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-specific expression profiles and roles in a range of cellular processes, including proliferation, migration, invasion, differentiation, inflammation and angiogenesis that are required in both normal physiology as well as pathological conditions. These roles require cleavage of a range of substrates, including extracellular matrix proteins, growth factors, cytokines as well as other proteinases. In addition, it has been clear since the earliest days of KLK research that cleavage of cell surface substrates is also essential in a range of KLK-mediated cellular processes where these peptidases are essentially acting as agonists and antagonists. In this review we focus on these KLK-regulated cell surface receptor systems including bradykinin receptors, proteinase-activated receptors, as well as the plasminogen activator, ephrins and their receptors, and hepatocyte growth factor/Met receptor systems and other plasma membrane proteins. From this analysis it is clear that in many physiological and pathological settings KLKs have the potential to regulate multiple receptor systems simultaneously; an important issue when these peptidases and substrates are targeted in disease.
Resumo:
Breast cancer is the second most common cancer worldwide and the most common cancer reported in women. This malignant tumour is characterised by a number of specific features including uncontrolled cell proliferation. It ranks fifth in the world as a cause of cancer death in women. Early diagnosis increases 5 year survival rates up to 95%. Heparan sulfate proteoglycans (HSPGs) are complex proteins composed of a core protein to which a number of highly sulfated side chains are synthesised by a highly co-ordinated process resulting in distinct sulfation patterns, which determine specific interations with cell-signaling partners including growth factors, their receptors, ligands and morphogens. The enzymes responsible for chain initiation, elongation and sulfation are critical for creating HS chain variability conferring biological functionality. This study investigated single nucleotide polymorphism in SULF1, the enzyme responsible for the 6-0 desulfation of heparan sulfate side chains. We investigated this SNP in an Australian Caucasian case-control breast cancer population and found a significant association between SULF1 and breast cancer at both the allelic and genotypic level (allele, p=0.016; genotype, p=0.032). Our results suggest the res2623047 SNP in SULF1 may impact breast cancer susceptibility. Specifically, the T allele of rs2623047 in SULF1 is associated with a increased risk of developing breast cancer in our cohort. The identification of markers including SULF1 may improve detection of this disease at its earliest stages improving patient treatment and prognosis.
Resumo:
Breast cancer is a common disease in both developing and developed countries with early identification and treatment improving prognosis and survival. Heparan sulfate proteoglycans (HSPGs) are key components of the extracellular matrix (ECM) that mediate cell adhesion, motility, proliferation, invasion and cell signalling. Members of the syndecan family of HSPGs have been identified to be involved in breast cancer progression through their varied interactions with a number of growth factors, ligands and receptors. Specifically, high expression levels of syndecan-1 (SDC1) have been demonstrated in more invasive breast tumours while elevated syndecan-4 (SDC4) levels have been identified to correspond with improved prognosis. With genetic changes in the syndecans and their association with breast cancers plausible, we examined two single nucleotide polymorphisms in SDC1 (rs1131351) and SDC4 (rs67068737) within an Australian Caucasian breast cancer case/control population. No association was found with SDC4 and breast cancer in our population. However, a significant association between SDC1 and breast cancer was identified in both our case/control population and in a replication cohort. When both populations were combined for analysis, this association became more significant (genotype, p = 0.0003; allele, p = 0.0001). This data suggests an increased risk of developing breast cancer associated with the presence of the C allele of the SDC1 rs1131351 single nucleotide polymorphism (SNP) and may provide a marker toward early breast cancer detection.
Resumo:
Introduction Hydrogels prepared from star-shaped poly(ethylene glycol) (PEG) and maleimide-functionalized heparin provide a potential matrix for use in developing three dimensional (3D) models. We have previously demonstrated that these hydrogels support the cultivation of human umbilical vein endothelial cells (HUVECs). We extend this body of work to study the ability to create an extracellular matrix (ECM)-like model to study breast and prostate cancer cell growth in 3D. Also, we investigate the ability to produce a tri-culture mimicking tumour angiogenesis with cancer spheroids, HUVECs and mesenchymal stem cells (MSCs). Materials and Methods The breast cancer cell lines, MCF-7 and MDA-MB-231, and prostate cancer cell lines, LNCaP and PC3, were seeded into starPEG-heparin hydrogels and grown for 14 Days to analyze the effects of varying hydrogel stiffness on spheroid development. Resulting hydrogel constructs were analyzed via proliferation assays, light microscopy, and immunostaining. Cancer cell lines were then seeded into starPEG-heparin hydrogels functionalized with growth factors as spheroids with HUVECs and MSCs and grown as a tri-culture. Cultures were analyzed via immunostaining and observed using confocal microscopy. Results Cultures prepared in MMP-cleavable starPEG-heparin hydrogels display spheroid formation in contrast to adherent growth on tissue culture plastic. Small differences were visualized in cancer spheroid growth between different gel stiffness across the range of cell lines. Cancer cell lines were able to be co-cultivated with HUVECs and MSC. Interaction was visualized between tumours and HUVECs via confocal microscopy. Further studies intend to further optimize and mimic the ECM environment of in-situ tumour angiogenesis. Discussion Our results confirm the suitability of hydrogels constructed from starPEG-heparin for HUVEC and MSC co-cultivation with cancer cell lines to study cell-cell and cell-matrix interactions in a 3D environment. This represents a step forward in the development of 3D culture models to study the pathomechanisms of breast and prostate cancer.
Resumo:
Several Eph receptor tyrosine kinases (RTKs) are commonly over-expressed in epithelial and mesenchymal cancers and are recognized as promising therapeutic targets. Although normal interaction between Eph receptors and their ephrin ligands stimulates kinase activity and is generally tumor suppressive, significant Eph over-expression allows activation of ligand- and/or kinase-independent signaling pathways that promote oncogenesis. Single-agent kinase inhibitors are widely used to target RTK-driven tumors but acquired and de novo resistance to such agents is a major limitation to effective clinical use. Accumulating evidence suggests that Ephs can be inhibited by “leaky” or low-specificity kinase inhibitors targeted at other RTKs. Such off-target effects may therefore inadvertently promote ligand- and/or kinase-independent oncogenic Eph signaling, thereby providing a new mechanism by which resistance to the RTK inhibitors can emerge. We propose that combining specific, non-leaky kinase inhibitors with tumor-suppressive stimulators of Eph signaling may provide more effective treatment options for overcoming treatment-induced resistance and clinical failure.