214 resultados para Genetic Vectors -- genetics
Resumo:
This article provides a critical analysis of the current Australian regulatory landscape at the interface between genetics and reproductive decision- making. The authors argue that a comparative analysis with other countries and international law and a contextual examination of the way law regulates concepts such as disease and health, abnormality and normality is necessary before we can develop appropriate policy and legislative responses in this area. Specific genetic testing technologies are considered including prenatal genetic testing, preimplantation genetic diagnosis and inheritable genetic modification. An increasing number of members of the Australian community are using genetic testing technologies when they decide to have a baby. The authors argue that as concepts of disease and health vary among members of the community and the potential to test for traits other than illness increases, a new tension arises between an ethic of individual choice and a role for government in regulating reproductive decision-making.
Resumo:
The discovery by Watson and Crick of the structure of DNA is one of the great scientific discoveries. In the period since that discovery new areas of genetic research have opened up which hold out the hope of developing treatments or cures for many illnesses and diseases. Yet with these discoveries have also come an array of ethical and legal dilemmas about the use of genetic information and concerns about the potential for those with genetic diseases or conditions to be stigmatised and discriminated against. The discussion about the developments in genetic science has become increasingly, a debate about the use of genetic information within our society. Graeme Laurie’s book, Genetic Privacy: A Challenge to Medico-Legal Norms, guides the reader through the complexities of these debates by considering what we mean by privacy and asking whether our existing concepts are adequate to meet the challenges posed by the new genetics.
Resumo:
Recent developments in genetic science will potentially have a significant impact on reproductive decision-making by adding to the list of conditions which can be diagnosed through prenatal diagnosis. This article analyses the jurisdictional variations that exist in Australian abortion laws and examines the extent to which Australian abortion laws specifically provide for termination of pregnancy on the grounds of fetal disability. The article also examines the potential impact of pre-implantation genetic diagnosis on reproductive decision-making and considers the meaning of reproductive autonomy in the context of the new genetics.
Resumo:
Replacement of endogenous genes by homologous recombination is rare in plants; the majority of genetic modifications are the result of transforming DNA molecules undergoing random genomic insertion by way of non-homologous recombination. Factors that affect chromatin remodeling and DNA repair are thought to have the potential to enhance the frequency of homologous recombination in plants. Conventional tools to study the frequencies of genetic recombination often rely on stable transformation-based approaches, with these systems being rarely capable of high-throughput or combinatorial analysis. We developed a series of vectors that use chemiluminescent (LUC and REN) reporter genes to assay the relative frequency of homologous and non-homologous recombination in plants. These transient assay vectors were used to screen 14 candidategenes for their effects on recombination frequencies in Nicotiana benthamiana plants. Over-expression of Arabidopsis genes with sequence similarity to SNM1 from yeast and XRCC3 from humans enhanced the frequency of non-homologous recombination when assayed using two different donor vectors. Transient N. benthamiana leaf systems were also used in an alternative assay for preliminary measurements of homologous recombination frequencies, which were found to be enhanced by over-expression of RAD52, MIM and RAD51 from yeast, as well as CHR24 from Arabidopsis. The findings for the assays described here are in line with previous studies that analyzed recombination frequencies using stable transformation. The assays we report have revealed functions in non-homologous recombination for the Arabidopsis SNM1 and XRCC3 genes, so the suppression of these genes' expression offers a potential means to enhance the gene targeting frequency in plants. Furthermore, our findings also indicate that plant gene targeting frequencies could be enhanced by over-expression of RAD52, MIM, CHR24, and RAD51 genes.
Resumo:
Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10(-7)) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations.
Resumo:
Chloroquine-resistant Plasmodium falciparum was highly prevalent in Hainan, China, in the 1970s. Twenty-five years after cessation of chloroquine therapy, the prevalence of P. falciparum wild-type Pfcrt alleles has risen to 36% (95% confidence interval, 22.1 to 52.4%). The diverse origins of wild-type alleles indicate that there was no genetic bottleneck caused by high chloroquine resistance.
Resumo:
Herbarium accession data offer a useful historical botanical perspective and have been used to track the spread of plant invasions through time and space. Nevertheless, few studies have utilised this resource for genetic analysis to reconstruct a more complete picture of historical invasion dynamics, including the occurrence of separate introduction events. In this study, we combined nuclear and chloroplast microsatellite analyses of contemporary and historical collections of Senecio madagascariensis, a globally invasive weed first introduced to Australia c. 1918 from its native South Africa. Analysis of nuclear microsatellites, together with temporal spread data and simulations of herbarium voucher sampling, revealed distinct introductions to south-eastern Australia and mid-eastern Australia. Genetic diversity of the south-eastern invasive population was lower than in the native range, but higher than in the mid-eastern invasion. In the invasive range, despite its low resolution, our chloroplast microsatellite data revealed the occurrence of new haplotypes over time, probably as the result of subsequent introduction(s) to Australia from the native range during the latter half of the 20th century. Our work demonstrates how molecular studies of contemporary and historical field collections can be combined to reconstruct a more complete picture of the invasion history of introduced taxa. Further, our study indicates that a survey of contemporary samples only (as undertaken for the majority of invasive species studies) would be insufficient to identify potential source populations and occurrence of multiple introductions.
Resumo:
Posttraumatic stress disorder (PTSD) is a complex syndrome that occurs following exposure to a potentially life threatening traumatic event. This review summarises the literature on the genetics of PTSD including gene–environment interactions (GxE), epigenetics and genetics of treatment response. Numerous genes have been shown to be associated with PTSD using candidate gene approaches. Genome-wide association studies have been limited due to the large sample size required to reach statistical power. Studies have shown that GxE interactions are important for PTSD susceptibility. Epigenetics plays an important role in PTSD susceptibility and some of the most promising studies show stress and child abuse trigger epigenetic changes. Much of the molecular genetics of PTSD remains to be elucidated. However, it is clear that identifying genetic markers and environmental triggers has the potential to advance early PTSD diagnosis and therapeutic interventions and ultimately ease the personal and financial burden of this debilitating disorder.
Resumo:
The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, inhabiting a small number of distinct and isolated coastal regions of Queensland and the Northern Territory. An examination of the evolutionary history and contemporary influences shaping the genetic structure of this species is required to make informed conservation management decisions. Here, we report the first analysis undertaken on the phylogeography and population genetics of the water mouse across its mainland Australian distribution. Genetic diversity was assessed at two mitochondrial DNA (Cytochrome b, 1000 bp; D-loop, 400 bp) and eight microsatellite DNA loci. Very low genetic diversity was found, indicating that water mice underwent a recent expansion throughout their Australian range and constitute a single evolutionarily significant unit. Microsatellite analyses revealed that the highest genetic diversity was found in the Mackay region of central Queensland; population substructure was also identified, suggesting that local populations may be isolated in this region. Conversely, genetic diversity in the Coomera region of south-east Queensland was very low and the population in this region has experienced a significant genetic bottleneck. These results have significant implications for future management, particularly in terms of augmenting populations through translocations or reintroducing water mice in areas where they have gone extinct.
Resumo:
Many, but not all, of the current 21 serotypes of Yersinia pseudotuberculosis have been investigated with regard to the chemical structures of their O-specific polysaccharide (OPS) and the genetic basis of their biosynthesis. Completion of the genetics and structures of the remaining serotypes will enhance our understanding of the emerging relationship between genetics and structures within this species. Here, we present a structural and genetic analysis of the Y. pseudotuberculosis serotype O:1c OPS. Our results showed that this OPS has the same backbone as Y. pseudotuberculosis O:2b, but with a 3,6-dideoxy-D-ribo-hexofuranose (paratofuranose, Parf) side-branch instead of a 3,6-dideoxy-D-xylo-hexopyranose (abequopyranose, Abep). The 3'-end of the gene cluster is the same as for O:2b and has the genes for synthesis of the backbone and for processing the completed repeat unit. The 5'-end of the cluster consists of the same genes as O:1b for synthesis of Parf and a related gene for its transfer to the repeating unit backbone.
Resumo:
Migraine and major depressive disorder (MDD) are comorbid, moderately heritable and to some extent influenced by the same genes. In a previous paper, we suggested the possibility of causality (one trait causing the other) underlying this comorbidity. We present a new application of polygenic (genetic risk) score analysis to investigate the mechanisms underlying the genetic overlap of migraine and MDD. Genetic risk scores were constructed based on data from two discovery samples in which genome-wide association analyses (GWA) were performed for migraine and MDD, respectively. The Australian Twin Migraine GWA study (N = 6,350) included 2,825 migraine cases and 3,525 controls, 805 of whom met the diagnostic criteria for MDD. The RADIANT GWA study (N = 3,230) included 1,636 MDD cases and 1,594 controls. Genetic risk scores for migraine and for MDD were used to predict pure and comorbid forms of migraine and MDD in an independent Dutch target sample (NTR-NESDA, N = 2,966), which included 1,476 MDD cases and 1,058 migraine cases (723 of these individuals had both disorders concurrently). The observed patterns of prediction suggest that the 'pure' forms of migraine and MDD are genetically distinct disorders. The subgroup of individuals with comorbid MDD and migraine were genetically most similar to MDD patients. These results indicate that in at least a subset of migraine patients with MDD, migraine may be a symptom or consequence of MDD. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The aim of this research was to assess the role of genetic variation in mitochondrial function and how this relates to migraine pathophysiology. Using our unique Norfolk Island population, a custom in-house next generation sequencing methodology was developed. This data for the first time showed that there is a molecular genetic link between mitochondrial dysfunction and migraine susceptibility. This work has provided the foundation for further studies aimed at utilising the identified markers in improved migraine diagnostic and therapeutic strategies.
Resumo:
The venture, 23andMe Inc., raises a host of issues in respect of patent law, policy, and practice in respect of lifestyle genetics and personalised medicine. The company observes: ‘We recognize that the availability of personal genetic information raises important issues at the nexus of ethics, law, and public policy’. 23andMe Inc. has tested the boundaries of patent law, with its patent applications, which cut across information technology, medicine, and biotechnology. The company’s research raises fundamental issues about patentability, especially in light of the litigation in Bilski v. Kappos, Mayo Collaborative Services v. Prometheus Laboratories Inc. and Association for Molecular Pathology v. United States Patent and Trademark Office and Myriad Genetics Inc. There has been much debate and controversy over 23andMe Inc. filing patent applications – particularly in respect of its granted patent on ‘Polymorphisms associated with Parkinson’s Disease’. The direct-to-consumer marketing of genetic testing by 23andMe Inc. has also raised important questions of bioethics and human rights. It is queried whether the terms of service for 23andMe Inc. provide adequate recognition of the concepts of informed consent and benefit-sharing, especially in light of litigation in this area in the United States. Given the patent thickets surrounding genetic testing, the case study of 23andMe Inc. also highlights questions about patent infringement and patent exceptions. The future reform of patent law, policy, and practice needs to take into account new developments in lifestyle genetics and personalised medicine – as exemplified by 23andMe Inc.
Resumo:
This article considers the debate over patent law, informed consent, and benefit-sharing in the context of biomedical research in respect of Indigenous communities. In particular, it focuses upon three key controversies over large-scale biology projects, involving Indigenous populations. These case studies are representative of the tensions between research organisations, Indigenous communities, and funding agencies. Section two considers the aims and origins of the Human Genome Diversity Project, and criticisms levelled against the venture by Indigenous peak bodies and anti-biotechnology groups, such as the Rural Advancement Foundation International. It examines the ways in which the United Nations Educational, Scientific, and Cultural Organization (UNESCO) grappled with questions of patent law, informed consent, and benefit sharing in relation to population genetics. Section three focuses upon the ongoing litigation in Tilousi v. Arizona State University, and the Havasupai Tribe v. Arizona State University. In this matter, the Havasupai tribe from the Grand Canyon in the United States brought legal action against the Arizona State University and its researchers for using genetic data for unauthorised purposes - namely, genetic research into schizophrenia, migration, and inbreeding. The litigation raises questions about informed consent, negligence, and larger matters of human rights. Section four explores the legal and ethical issues raised by the Genographic Project. It considers the aims and objectives of the venture, and the criticisms levelled against it by Indigenous communities, and anti-biotechnology groups. It examines the response of the United Nations Permanent Forum on Indigenous Issues to the Genographic Project. It charts the debate over the protection of traditional knowledge in various international fora. The conclusion recommends a number of measures to better regulate large-scale biology projects involving the participation of Indigenous communities.
Resumo:
Because brain structure and function are affected in neurological and psychiatric disorders, it is important to disentangle the sources of variation in these phenotypes. Over the past 15 years, twin studies have found evidence for both genetic and environmental influences on neuroimaging phenotypes, but considerable variation across studies makes it difficult to draw clear conclusions about the relative magnitude of these influences. Here we performed the first meta-analysis of structural MRI data from 48 studies on >1,250 twin pairs, and diffusion tensor imaging data from 10 studies on 444 twin pairs. The proportion of total variance accounted for by genes (A), shared environment (C), and unshared environment (E), was calculated by averaging A, C, and E estimates across studies from independent twin cohorts and weighting by sample size. The results indicated that additive genetic estimates were significantly different from zero for all metaanalyzed phenotypes, with the exception of fractional anisotropy (FA) of the callosal splenium, and cortical thickness (CT) of the uncus, left parahippocampal gyrus, and insula. For many phenotypes there was also a significant influence of C. We now have good estimates of heritability for many regional and lobar CT measures, in addition to the global volumes. Confidence intervals are wide and number of individuals small for many of the other phenotypes. In conclusion, while our meta-analysis shows that imaging measures are strongly influenced by genes, and that novel phenotypes such as CT measures, FA measures, and brain activation measures look especially promising, replication across independent samples and demographic groups is necessary.