130 resultados para Focal epithelial hyperplasia
Resumo:
Directional cell migration requires force generation that relies on the coordinated remodeling of interactions with the extracellular matrix (ECM), which is mediated by integrin-based focal adhesions (FAs). Normal FA turnover requires dynamic microtubules, and three members of the diverse group of microtubule plus-end-tracking proteins are principally involved in mediating microtubule interactions with FAs. Microtubules also alter the assembly state of FAs by modulating Rho GTPase signaling, and recent evidence suggests that microtubule-mediated clathrin-dependent and -independent endocytosis regulates FA dynamics. In addition, FA-associated microtubules may provide a polarized microtubule track for localized secretion of matrix metalloproteases (MMPs). Thus, different aspects of the molecular mechanisms by which microtubules control FA turnover in migrating cells are beginning to emerge.
Resumo:
Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although targeting the androgen axis has clear therapeutic benefit, its effectiveness is temporary, as prostate tumor cells adapt to survive and grow. The removal of androgens (androgen deprivation) has been shown to activate both epithelial-to-mesenchymal transition (EMT) and neuroendocrine transdifferentiation (NEtD) programs. EMT has established roles in promoting biological phenotypes associated with tumor progression (migration/invasion, tumor cell survival, cancer stem cell-like properties, resistance to radiation and chemotherapy) in multiple human cancer types. NEtD in prostate cancer is associated with resistance to therapy, visceral metastasis, and aggressive disease. Thus, activation of these programs via inhibition of the androgen axis provides a mechanism by which tumor cells can adapt to promote disease recurrence and progression. Brachyury, Axl, MEK, and Aurora kinase A are molecular drivers of these programs, and inhibitors are currently in clinical trials to determine therapeutic applications. Understanding tumor cell plasticity will be important in further defining the rational use of androgen-targeted therapies clinically and provides an opportunity for intervention to prolong survival of men with metastatic prostate cancer.
Resumo:
Prostate-specific antigen (PSA) and the related kallikrein family of serine proteases are current or emerging biomarkers for prostate cancer detection and progression. Kallikrein 4 (KLK4/hK4) is of particular interest, as KLK4 mRNA has been shown to be elevated in prostate cancer. In this study, we now show that the comparative expression of hK4 protein in prostate cancer tissues, compared with benign glands, is greater than that of PSA and kallikrein 2 (KLK2/hK2), suggesting that hK4 may play an important functional role in prostate cancer progression in addition to its biomarker potential. To examine the roles that hK4, as well as PSA and hK2, play in processes associated with progression, these kallikreins were separately transfected into the PC-3 prostate cancer cell line, and the consequence of their stable transfection was investigated. PC-3 cells expressing hK4 had a decreased growth rate, but no changes in cell proliferation were observed in the cells expressing PSA or hK2. hK4 and PSA, but not hK2, induced a 2.4-fold and 1.7-fold respective increase, in cellular migration, but not invasion, through Matrigel, a synthetic extracellular matrix. We hypothesised that this increase in motility displayed by the hK4 and PSA-expressing PC-3 cells may be related to the observed change in structure in these cells from a typical rounded epithelial-like cell to a spindle-shaped, more mesenchymal-like cell, with compromised adhesion to the culture surface. Thus, the expression of E-cadherin and vimentin, both associated with an epithelial-mesenchymal transition (EMT), was investigated. E-cadherin protein was lost and mRNA levels were significantly decreased in PC-3 cells expressing hK4 and PSA (10-fold and 7-fold respectively), suggesting transcriptional repression of E-cadherin, while the expression of vimentin was increased in these cells. The loss of E-cadherin and associated increase in vimentin are indicative of EMT and provides compelling evidence that hK4, in particular, and PSA have a functional role in the progression of prostate cancer through their promotion of tumour cell migration.
Resumo:
This is a comprehensive study of human kidney proximal tubular epithelial cells (PTEC) which are known to respond to and mediate the pathological process of a range of kidney diseases. It identifies various molecules expressed by PTEC and how these molecules participate in down-regulating the inflammatory process, thereby highlighting the clinical potential of these molecules to treat various kidney diseases. In the disease state, PTEC gain the ability to regulate the immune cell responses present within the interstitium. This down-regulation is a complex interaction of contact dependent/independent mechanisms involving various immuno-regulatory molecules including PD-L1, sHLA-G and IDO. The overall outcome of this down-regulation is suppressed DC maturation, decreased number of antibody producing B cells and low T cell responses. These manifestations within a clinical setting are expected to dampen the ongoing inflammation, preventing the damage caused to the kidney tissue.
Resumo:
IgA is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intraepithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant SIgA we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra and intraepithelial stages of infection. We developed an in vitro model utilizing polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model utilizing pIgR-/- mice. SIgA targeting the extraepithelial chlamydial antigen, the major outer membrane protein (MOMP), significantly reduced infection in vitro by 24 % and in vivo by 44 %. Conversely, pIgR-mediated delivery of IgA targeting the intraepithelial inclusion membrane protein A (IncA) bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intraepithelial IgA targeting the secreted protease Chlamydia protease-like activity factor (CPAF) also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra but not intraepithelial chlamydial antigens for protection against a genital tract infection.
Resumo:
The silk protein fibroin (Bombyx mori) provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial (HLE) cells (Tissue Eng A. 14(2008)1203-11). We extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Also, we investigate the ability to produce a bi-layered composite scaffold of fibroin with an upper HLE layer and lower HLS layer.
Resumo:
A silk protein, fibroin, was isolated from the cocoons of the domesticated silkworm (Bombyx mori) and cast into membranes to serve as freestanding templates for tissue-engineered corneal cell constructs to be used in ocular surface reconstruction. In this study, we sought to enhance the attachment and proliferation of corneal epithelial cells by increasing the permeability of the fibroin membranes and the topographic roughness of their surface. By mixing the fibroin solution with poly(ethylene glycol) (PEG) of molecular weight 300 Da, membranes were produced with increased permeability and with topographic patterns generated on their surface. In order to enhance their mechanical stability, some PEG-treated membranes were also crosslinked with genipin. The resulting membranes were thoroughly characterized and compared to the non-treated membranes. The PEG-treated membranes were similar in tensile strength to the non-treated ones, but their elastic modulus was higher and elongation lower, indicating enhanced rigidity. The crosslinking with genipin did not induce a significant improvement in mechanical properties. In cultures of a human-derived corneal epithelial cell line (HCE-T), the PEG treatment of the substratum did not improve the attachment of cells and it enhanced only slightly the cell proliferation in the longer term. Likewise, primary cultures of human limbal epithelial cells grew equally well on both non-treated and PEG-treated membranes, and the stratification of cultures was consistently improved in the presence of an underlying culture of irradiated 3T3 feeder cells, irrespectively of PEG-treatment. Nevertheless, the cultures grown on the PEG-treated membranes in the presence of feeder cells did display a higher nuclear-to-cytoplasmic ratio suggesting a more proliferative phenotype. We concluded that while the treatment with PEG had a significant effect on some structural properties of the B. mori silk fibroin (BMSF) membranes, there were minimal gains in the performance of these materials as a substratum for corneal epithelial cell growth. The reduced mechanical stability of freestanding PEG-treated membranes makes them a less viable choice than the non-treated membranes.
Resumo:
Silk fibroin provides a promising biomaterial for ocular tissue reconstruction including the damaged outer blood-retinal barrier of patients afflicted with age-related macular degeneration (AMD). The aim of the present study was to evaluate the function of retinal pigment epithelial (RPE) cells in vitro, when grown on fibroin membranes manufactured to a similar thickness as Bruch’s membrane (3 μm). Confluent cultures of RPE cells (ARPE-19) were established on fibroin membranes and maintained under conditions designed to promote maturation over 4 months. Control cultures were grown on polyester cell culture well inserts (Transwell). Cultures established on either material developed a cobblestoned morphology with partial pigmentation within 12 weeks. Immunocytochemistry at 16 weeks revealed a similar distribution pattern between cultures for F-actin, ZO-1, ezrin, cytokeratin pair 8/18, RPE-65 and Na+/K+-ATPase. Electron microscopy revealed that cultures grown on fibroin displayed a rounder apical surface with a more dense distribution of microvilli. Both cultures avidly ingested fluorescent microspheres coated with vitronectin and bovine serum albumin (BSA), but not controls coated with BSA alone. VEGF and PEDF were detected in the conditioned medium collected from above and below both membrane types. Levels of PEDF were significantly higher than for VEGF on both membranes and a trend was observed towards larger amounts of PEDF in apical compartments. These findings demonstrate that RPE cell functions on fibroin membranes are equivalent to those observed for standard test materials (polyester membranes). As such, these studies support advancement to studies of RPE cell implantation on fibroin membranes in a preclinical model.
Resumo:
Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.
Resumo:
Recent advances in optical and fluorescent protein technology have rapidly raised expectations in cell biology, allowing quantitative insights into dynamic intracellular processes like never before. However, quantitative live-cell imaging comes with many challenges including how best to translate dynamic microscopy data into numerical outputs that can be used to make meaningful comparisons rather than relying on representative data sets. Here, we use analysis of focal adhesion turnover dynamics as a straightforward specific example on how to image, measure, and analyze intracellular protein dynamics, but we believe this outlines a thought process and can provide guidance on how to understand dynamic microcopy data of other intracellular structures.
Resumo:
It is becoming increasing clear that microRNAs contribute to the regulation of many biological processes, including wound healing. After injury, keratinocytes need to undergo what is known as an epithelial-to-mesenchymal transition (EMT) to initiate re-epithelialisation. During this process, keratinocytes reduce their attachment to the underlying matrix, extend membrane protrusions, become motile and migrate over the wound bed, affecting wound closure. MicroRNAs that regulate EMT are aberrantly upregulated in keratinocytes at the edge of non-healing wounds and potentially play a role in the chronicity of these wounds. In vitro and in vivo, downregulation of these microRNAs promotes EMT and migration, facilitating re-epithelialisation in wound models. This review will focus on the role of microRNAs that regulate or have potential to regulate EMT and re-epithelialisation during wound healing
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
Objectives: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous tumour type which necessitates multiple invitro models to attain an appreciation of its multiple subtypes. The phenomenon of epithelial-mesenchymal transition (EMT) isimportant to the development of a metastatic cancer cell phenotype being relevant to the ability of cancer cells to intravasate intovasculature and to invade tissues. The role of EMT in human papilloma virus (HPV) positive HNSCC is not well understood. Thispaper aims to characterize seven HNSCC cell lines (FaDu, SCC-25, SCC-15, CAL27, RPMI2650) including two new HPV-16positive HNSCC cell lines (UD-SCC2, 93-VU-147T) for their epithelial and mesenchymal properties. Materials and methods: A panel of HNSCC cell lines from multiple head and neck anatomical sites were profiled for basalexpression of epithelial and mesenchymal characteristics at mRNA, protein and functional levels (proliferative, migratory andinvasive properties). Furthermore, 3D spheroid forming capabilities were investigated. Results: We found that the HPV-16 positive cell line, in particular UD-SCC2 demonstrated a more invasive and mesenchymalphenotype at the molecular and functional levels suggesting HPV infection may mediate some of these cellular properties.Moreover, HPV-negative cell lines were not strictly epithelial presenting with a dynamic range of expression. Conclusions: This study presents the molecular and phenotypic diversity of HNSCC cell lines. It highlights the need formore studies in this field and a scoring system where HNSCC cell lines are ranked according to their respective epithelial andmesenchymal nature. This data will be useful to anyone modelling HNSCC behaviour, providing a molecular context which willenable them to decipher cell phenotypes and to develop therapies which block EMT progression.
Resumo:
Proximal tubule epithelial cells (PTEC) of the kidney line the proximal tubule downstream of the glomerulus and play a major role in the re-absorption of small molecular weight proteins that may pass through the glomerular filtration process. In the perturbed disease state PTEC also contribute to the inflammatory disease process via both positive and negative mechanisms via the production of inflammatory cytokines which chemo-attract leukocytes and the subsequent down-modulation of these cells to prevent uncontrolled inflammatory responses. It is well established that dendritic cells are responsible for the initiation and direction of adaptive immune responses. Both resident and infiltrating dendritic cells are localised within the tubulointerstitium of the renal cortex, in close apposition to PTEC, in inflammatory disease states. We previously demonstrated that inflammatory PTEC are able to modulate autologous human dendritic cell phenotype and functional responses. Here we extend these findings to characterise the mechanisms of this PTEC immune-modulation using primary human PTEC and autologous monocyte-derived dendritic cells (MoDC) as the model system. We demonstrate that PTEC express three inhibitory molecules: (i) cell surface PD-L1 that induces MoDC expression of PD-L1; (ii) intracellular IDO that maintains the expression of MoDC CD14, drives the expression of CD80, PD-L1 and IL-10 by MoDC and inhibits T cell stimulatory capacity; and (iii) soluble HLA-G (sHLA-G) that inhibits HLA-DR and induces IL-10 expression by MoDC. Collectively the results demonstrate that primary human PTEC are able to modulate autologous DC phenotype and function via multiple complex pathways. Further dissection of these pathways is essential to target therapeutic strategies in the treatment of inflammatory kidney disorders.