180 resultados para Dna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following isophorone exposure, in a 2-year study with F344 rats and B6C3F1 mice performed under the National Toxicology Program (NTP), an elevated incidence of tumors was observed in male rats (kidney tumors) and male mice (liver tumors). Female rats and mice showed no elevation of tumor rates by isophorone (NTP 1986).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head and neck cancers (HNCs) represent a significant and ever-growing burden to the modern society, mainly due to the lack of early diagnostic methods. A significant number of HNCs is often associated with drinking, smoking, chewing beetle nut, and human papilloma virus (HPV) infections. We have analyzed DNA methylation patterns in tumor and normal tissue samples collected from head and neck squamous cell carcinoma (HNSCC) patients who were smokers. We have identified novel methylation sites in the promoter of the mediator complex subunit 15 (MED15/PCQAP) gene (encoing a co-factor important for regulation of transcription initiation for promoters of many genes), hypermethylated specifically in tumor cells. Two clusters of CpG dinucleotides methylated in tumors, but not in normal tissue from the same patients, were identified. These CpG methylation events in saliva samples were further validated in a separate cohort of HNSCC patients (who developed cancer due to smoking or HPV infections) and healthy controls using methylation-specific PCR (MSP). We used saliva as a biological medium because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option for large-scale screening studies. The methylation levels for the two identified CpG clusters were significantly different between the saliva samples collected from healthy controls and HNSCC individuals (Welch's t-test returning P, 0.05 and Mann-Whitney test P, 0.01 for both). The developed MSP assays also provided a good discriminative ability with AUC values of 0.70 (P, 0.01) and 0.63 (P, 0.05). The identified novel CpG methylation sites may serve as potential non-invasive biomarkers for detecting HNSCC. © the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deoxyribonucleic acid (DNA) extraction has considerably evolved since it was initially performed back in 1869. It is the first step required for many of the available downstream applications used in the field of molecular biology. Whole blood samples are one of the main sources used to obtain DNA, and there are many different protocols available to perform nucleic acid extraction on such samples. These methods vary from very basic manual protocols to more sophisticated methods included in automated DNA extraction protocols. Based on the wide range of available options, it would be ideal to determine the ones that perform best in terms of cost-effectiveness and time efficiency. We have reviewed DNA extraction history and the most commonly used methods for DNA extraction from whole blood samples, highlighting their individual advantages and disadvantages. We also searched current scientific literature to find studies comparing different nucleic acid extraction methods, to determine the best available choice. Based on our research, we have determined that there is not enough scientific evidence to support one particular DNA extraction method from whole blood samples. Choosing a suitable method is still a process that requires consideration of many different factors, and more research is needed to validate choices made at facilities around the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the detection of DNA mutations using novel Au-Ag coated GaN substrate as SERS (surface-enhanced Raman spectroscopy) diagnostic platform. Oligonucleotide sequences corresponding to the BCR-ABL (breakpoint cluster region-Abelson) gene responsible for development of chronic myelogenous leukemia were used as a model system to demonstrate the discrimination between the wild type and Met244Val mutations. The thiolated ssDNA (single-strand DNA) was immobilized on the SERS-active surface and then hybridized to a labeled target sequence from solution. An intense SERS signal of the reporter molecule MGITC was detected from the complementary target due to formation of double helix. The SERS signal was either not observed, or decreased dramatically for a negative control sample consisting of labeled DNA that was not complementary to the DNA probe. The results indicate that our SERS substrate offers an opportunity for the development of novel diagnostic assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The therapeutic ratio for ionising radiation treatment of tumour is a trade-off between normal tissue side-effects and tumour control. Application of a radioprotector to normal tissue can reduce side-effects. Here we study the effects of a new radioprotector on the cellular response to radiation. Methylproamine is a DNA-binding radioprotector which, on the basis of published pulse radiolysis studies, acts by repair of transient radiation-induced oxidative species on DNA. To substantiate this hypothesis, we studied protection by methylproamine at both clonogenic survival and radiation-induced DNA damage, assessed by γH2AX (histone 2AX phosphorylation at serine 139) focus formation endpoints. Materials and methods: The human keratinocyte cell line FEP1811 was used to study clonogenic survival and yield of γH2AX foci following irradiation (137Cs γ-rays) of cells exposed to various concentrations of methylproamine. Uptake of methylproamine into cell nuclei was measured in parallel. Results: The extent of radioprotection at the clonogenic survival endpoint increased with methylproamine concentration up to a maximum dose modification factor (DMF) of 2.0 at 10 μM. At least 0.1 fmole/nucleus of methylproamine is required to achieve a substantial level of radioprotection (DMF of 1.3) with maximum protection (DMF of 2.0) achieved at 0.23 fmole/nucleus. The γH2AX focus yield per cell nucleus 45 min after irradiation decreased with drug concentration with a DMF of 2.5 at 10 μM. Conclusions: These results are consistent with the hypothesis that radioprotection by methylproamine is mediated by attenuation of the extent of initial DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. Materials and methods We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (γH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. Results We found that methylproamine-treated cells had fewer γH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. Conclusions These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: About 1-5% of cancer patients suffer from significant normal tissue reactions as a result of radiotherapy (RT). It is not possible at this time to predict how most patients' normal tissues will respond to RT. DNA repair dysfunction is implicated in sensitivity to RT particularly in genes that mediate the repair of DNA double-strand breaks (DSBs). Phosphorylation of histone H2AX (phosphorylated molecules are known as gammaH2AX) occurs rapidly in response to DNA DSBs, and, among its other roles, contributes to repair protein recruitment to these damaged sites. Mammalian cell lines have also been crucial in facilitating the successful cloning of many DNA DSB repair genes; yet, very few mutant cell lines exist for non-syndromic clinical radiosensitivity (RS). METHODS: Here, we survey DNA DSB induction and repair in whole cells from RS patients, as revealed by gammaH2AX foci assays, as potential predictive markers of clinical radiation response. RESULTS: With one exception, both DNA focus induction and repair in cell lines from RS patients were comparable with controls. Using gammaH2AX foci assays, we identified a RS cancer patient cell line with a novel ionising radiation-induced DNA DSB repair defect; these data were confirmed by an independent DNA DSB repair assay. CONCLUSION: gammaH2AX focus measurement has limited scope as a pre-RT predictive assay in lymphoblast cell lines from RT patients; however, the assay can successfully identify novel DNA DSB repair-defective patient cell lines, thus potentially facilitating the discovery of novel constitutional contributions to clinical RS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that the traditional taxonomy and nomenclature of Chironomidae relies on adult males whose usually characteristic genitalia provide evidence of species distinction. In the early days some names were based on female adults of variable distinctiveness – but females are difficult to identify (Ekrem et al. 2010) and many of these names remain dubious. In Russia especially, a system based on larval morphology grew in parallel to the conventional adult-based system. The systems became reconciled with the studies that underlay the production of the Holarctic generic keys to Chironomidae, commencing notably with the larval volume (Wiederholm, 1983). Ever since Thienemann’s pioneering studies, it has been evident that the pupa, notably the cast skins (exuviae) provide a wealth of features that can aid in identification (e.g. Wiederholm, 1986). Furthermore, the pupae can be readily associated with name-bearing adults when a pharate (‘cloaked’) adult stage is visible within the pupa. Association of larvae with the name-bearing later stages has been much more difficult, time-consuming and fraught with risk of failure. Yet it is identification of the larval stage that is needed by most applied researchers due to the value of the immature stages of the family in aquatic monitoring for water quality, although the pupal stage also has advocates (reviewed by Sinclair & Gresens, 2008). Few use the adult stage for such purposes as their provenance and association with the water body can be verified only by emergence trapping, and sampling of adults lies outside regular aquatic monitoring protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We undertook analyses of mitochondrial DNA gene sequences and echolocation calls to resolve phylogenetic relationships among the related bat taxa Rhinolophus pusillus (sampled across China), R. monoceros (Taiwan), R. cornutus (main islands of Japan), and R. c. pumilus (Okinawa, Japan), Phylogenetic trees and genetic divergence analyses were constructed by combining new complete mitochondrial cytochrome-b gene sequences and partial mitochondrial control region sequences with published sequences. Our work showed that these 4 taxa formed monophyletic groups in the phylogenetic tree. However, low levels of sequence divergence among the taxa, together with similarities in body size and overlapping echolocation call frequencies, point to a lack of taxonomic distinctiveness. We therefore suggest that these taxa are better considered as geographical subspecies rather than distinct species, although this should not diminish the conservation importance of these island populations, which are important evolutionarily significant units. Based on our findings, we suggest that the similarities in body size and echolocation call frequency in these rhinolophids result from their recent common ancestry, whereas similarities in body size and call frequency with R. hipposideros of Europe are the result of convergent evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report that tumor cells devoid of their mitochondrial genome (mtDNA) show delayed tumor growth and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory supercomplexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest a novel pathophysiological process for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Results Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3′ untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. Conclusions This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monash University in Australia has developed a new approach towards DNA vaccine development that has the potential to cut the time it takes to produce a vaccine from up to nine months to four weeks or less. The university has designed and filed a patent on a commercially viable, single-stage technology for manufacturing DNA molecules. The technology was used to produce malaria and measles DNA vaccines, which were tested to be homogeneous supercoiled DNA, free from RNA and protein contaminations and meeting FDA regulatory standards for DNA vaccines. The technique is based on customized, smart, polymeric, monolithic adsorbents that can purify DNA very rapidly. The design criteria of solid-phase adsorbent include rapid adsorption and desorption kinetics, physical composition, and adequate selectivity , capacity and recovery. The new show technology significantly improved binding capacities, higher recovery, drastically reduced use of buffers and processing time, less clogging, and higher yields of DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.