121 resultados para DYNAMICAL REALIZATIONS
Resumo:
In this paper, a class of unconditionally stable difference schemes based on the Pad´e approximation is presented for the Riesz space-fractional telegraph equation. Firstly, we introduce a new variable to transform the original dfferential equation to an equivalent differential equation system. Then, we apply a second order fractional central difference scheme to discretise the Riesz space-fractional operator. Finally, we use (1, 1), (2, 2) and (3, 3) Pad´e approximations to give a fully discrete difference scheme for the resulting linear system of ordinary differential equations. Matrix analysis is used to show the unconditional stability of the proposed algorithms. Two examples with known exact solutions are chosen to assess the proposed difference schemes. Numerical results demonstrate that these schemes provide accurate and efficient methods for solving a space-fractional hyperbolic equation.
Resumo:
In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation with variable coefficients from the fractional Fick’s law. A semi-implicit difference method (SIDM) for this equation is proposed. The stability and convergence of the SIDM are discussed. For the implementation, we develop a fast accurate iterative method for the SIDM by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices. This fast iterative method significantly reduces the storage requirement of O(n2)O(n2) and computational cost of O(n3)O(n3) down to n and O(nlogn)O(nlogn), where n is the number of grid points. The method retains the same accuracy as the underlying SIDM solved with Gaussian elimination. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.
Resumo:
In this paper, a new alternating direction implicit Galerkin--Legendre spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The temporal component is discretized by the Crank--Nicolson method. The detailed implementation of the method is presented. The stability and convergence analysis is strictly proven, which shows that the derived method is stable and convergent of order $2$ in time. An optimal error estimate in space is also obtained by introducing a new orthogonal projector. The present method is extended to solve the fractional FitzHugh--Nagumo model. Numerical results are provided to verify the theoretical analysis.
Resumo:
The maximum principle for the space and time–space fractional partial differential equations is still an open problem. In this paper, we consider a multi-term time–space Riesz–Caputo fractional differential equations over an open bounded domain. A maximum principle for the equation is proved. The uniqueness and continuous dependence of the solution are derived. Using a fractional predictor–corrector method combining the L1 and L2 discrete schemes, we present a numerical method for the specified equation. Two examples are given to illustrate the obtained results.
Resumo:
Subdiffusion equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we consider the time distributed-order and Riesz space fractional diffusions on bounded domains with Dirichlet boundary conditions. Here, the time derivative is defined as the distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the Riesz fractional derivative. First, we discretize the integral term in the time distributed-order and Riesz space fractional diffusions using numerical approximation. Then the given equation can be written as a multi-term time–space fractional diffusion. Secondly, we propose an implicit difference method for the multi-term time–space fractional diffusion. Thirdly, using mathematical induction, we prove the implicit difference method is unconditionally stable and convergent. Also, the solvability for our method is discussed. Finally, two numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
Nonlinear time-fractional diffusion equations have been used to describe the liquid infiltration for both subdiffusion and superdiffusion in porous media. In this paper, some problems of anomalous infiltration with a variable-order timefractional derivative in porous media are considered. The time-fractional Boussinesq equation is also considered. Two computationally efficient implicit numerical schemes for the diffusion and wave-diffusion equations are proposed. Numerical examples are provided to show that the numerical methods are computationally efficient.
Resumo:
In this paper, we consider a two-sided space-fractional diffusion equation with variable coefficients on a finite domain. Firstly, based on the nodal basis functions, we present a new fractional finite volume method for the two-sided space-fractional diffusion equation and derive the implicit scheme and solve it in matrix form. Secondly, we prove the stability and convergence of the implicit fractional finite volume method and conclude that the method is unconditionally stable and convergent. Finally, some numerical examples are given to show the effectiveness of the new numerical method, and the results are in excellent agreement with theoretical analysis.
Resumo:
The fractional Fokker-Planck equation is an important physical model for simulating anomalous diffusions with external forces. Because of the non-local property of the fractional derivative an interesting problem is to explore high accuracy numerical methods for fractional differential equations. In this paper, a space-time spectral method is presented for the numerical solution of the time fractional Fokker-Planck initial-boundary value problem. The proposed method employs the Jacobi polynomials for the temporal discretization and Fourier-like basis functions for the spatial discretization. Due to the diagonalizable trait of the Fourier-like basis functions, this leads to a reduced representation of the inner product in the Galerkin analysis. We prove that the time fractional Fokker-Planck equation attains the same approximation order as the time fractional diffusion equation developed in [23] by using the present method. That indicates an exponential decay may be achieved if the exact solution is sufficiently smooth. Finally, some numerical results are given to demonstrate the high order accuracy and efficiency of the new numerical scheme. The results show that the errors of the numerical solutions obtained by the space-time spectral method decay exponentially.
Resumo:
In analysis of longitudinal data, the variance matrix of the parameter estimates is usually estimated by the 'sandwich' method, in which the variance for each subject is estimated by its residual products. We propose smooth bootstrap methods by perturbing the estimating functions to obtain 'bootstrapped' realizations of the parameter estimates for statistical inference. Our extensive simulation studies indicate that the variance estimators by our proposed methods can not only correct the bias of the sandwich estimator but also improve the confidence interval coverage. We applied the proposed method to a data set from a clinical trial of antibiotics for leprosy.
Resumo:
This thesis aimed to compare the effects of constraints-led and traditional coaching approaches on young cricket spin bowlers, with a specific research focus on increasing spin rates (i.e., Revolutions per Minute). Participants were 22 spin bowlers from either an Australia state youth squad or an academy in England. Results indicate that adopting a constraints-led approach can benefit younger, inexperienced bowlers, whilst a traditional approach may assist more skilled, older bowlers. The findings are discussed with regards to how they may inform the learning design of training programs by cricket coaches.
Resumo:
Quality of Service (QoS) is a new issue in cloud-based MapReduce, which is a popular computation model for parallel and distributed processing of big data. QoS guarantee is challenging in a dynamical computation environment due to the fact that a fixed resource allocation may become under-provisioning, which leads to QoS violation, or over-provisioning, which increases unnecessary resource cost. This requires runtime resource scaling to adapt environmental changes for QoS guarantee. Aiming to guarantee the QoS, which is referred as to hard deadline in this work, this paper develops a theory to determine how and when resource is scaled up/down for cloud-based MapReduce. The theory employs a nonlinear transformation to define the problem in a reverse resource space, simplifying the theoretical analysis significantly. Then, theoretical results are presented in three theorems on sufficient conditions for guaranteeing the QoS of cloud-based MapReduce. The superiority and applications of the theory are demonstrated through case studies.
Resumo:
The c-Fos–c-Jun complex forms the activator protein 1 transcription factor, a therapeutic target in the treatment of cancer. Various synthetic peptides have been designed to try to selectively disrupt the interaction between c-Fos and c-Jun at its leucine zipper domain. To evaluate the binding affinity between these synthetic peptides and c-Fos, polarizable and nonpolarizable molecular dynamics (MD) simulations were conducted, and the resulting conformations were analyzed using the molecular mechanics generalized Born surface area (MM/GBSA) method to compute free energies of binding. In contrast to empirical and semiempirical approaches, the estimation of free energies of binding using a combination of MD simulations and the MM/GBSA approach takes into account dynamical properties such as conformational changes, as well as solvation effects and hydrophobic and hydrophilic interactions. The predicted binding affinities of the series of c-Jun-based peptides targeting the c-Fos peptide show good correlation with experimental melting temperatures. This provides the basis for the rational design of peptides based on internal, van der Waals, and electrostatic interactions.
Resumo:
In this manuscript, we consider the impact of a small jump-type spatial heterogeneity on the existence of stationary localized patterns in a system of partial dierential equations in one spatial dimension...
Resumo:
Recently, partially ionic boron (γ-B28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [Nature, 457 (2009) 863]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B2 atom pairs, with the P6/mmm space group and 6 atoms in the unit cell, and has lower energy than the previously reported α-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac fermions due to the significant charge transfer between the graphene-like plane and B2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (vf) as high as 2.3 x 106 m/s, which is even higher than that of graphene (0.82 x 106 m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics.
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. The control system designed is referred to as Boarding Control System (BCS). The performance of this system is investigated for a specific wind-farm service vessel—The Wave Craft. On a SES, the pressurized air cushion supports the majority of the weight of the vessel. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. Results are given through simulation, model- and full-scale experimental testing.