280 resultados para Cognitive complexity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature abounds with descriptions of failures in high-profile projects and a range of initiatives has been generated to enhance project management practice (e.g., Morris, 2006). Estimating from our own research, there are scores of other project failures that are unrecorded. Many of these failures can be explained using existing project management theory; poor risk management, inaccurate estimating, cultures of optimism dominating decision making, stakeholder mismanagement, inadequate timeframes, and so on. Nevertheless, in spite of extensive discussion and analysis of failures and attention to the presumed causes of failure, projects continue to fail in unexpected ways. In the 1990s, three U.S. state departments of motor vehicles (DMV) cancelled major projects due to time and cost overruns and inability to meet project goals (IT-Cortex, 2010). The California DMV failed to revitalize their drivers’ license and registration application process after spending $45 million. The Oregon DMV cancelled their five year, $50 million project to automate their manual, paper-based operation after three years when the estimates grew to $123 million; its duration stretched to eight years or more and the prototype was a complete failure. In 1997, the Washington state DMV cancelled their license application mitigation project because it would have been too big and obsolete by the time it was estimated to be finished. There are countless similar examples of projects that have been abandoned or that have not delivered the requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the use of certain data-dependent estimates of the complexity of a function class, called Rademacher and Gaussian complexities. In a decision theoretic setting, we prove general risk bounds in terms of these complexities. We consider function classes that can be expressed as combinations of functions from basis classes and show how the Rademacher and Gaussian complexities of such a function class can be bounded in terms of the complexity of the basis classes. We give examples of the application of these techniques in finding data-dependent risk bounds for decision trees, neural networks and support vector machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the heuristic construction of bijective s-boxes that satisfy a wide range of cryptographic criteria including algebraic complexity, high nonlinearity, low autocorrelation and have none of the known weaknesses including linear structures, fixed points or linear redundancy. We demonstrate that the power mappings can be evolved (by iterated mutation operators alone) to generate bijective s-boxes with the best known tradeoffs among the considered criteria. The s-boxes found are suitable for use directly in modern encryption algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of learning paradigms of identification in the limit, we address the question: why is uncertainty sometimes desirable? We use mind change bounds on the output hypotheses as a measure of uncertainty and interpret ‘desirable’ as reduction in data memorization, also defined in terms of mind change bounds. The resulting model is closely related to iterative learning with bounded mind change complexity, but the dual use of mind change bounds — for hypotheses and for data — is a key distinctive feature of our approach. We show that situations exist where the more mind changes the learner is willing to accept, the less the amount of data it needs to remember in order to converge to the correct hypothesis. We also investigate relationships between our model and learning from good examples, set-driven, monotonic and strong-monotonic learners, as well as class-comprising versus class-preserving learnability.

Relevância:

20.00% 20.00%

Publicador: