442 resultados para Business process performance
Resumo:
As organizations attempt to become more business process-oriented, existing role descriptions are revised and entire new business process-related roles emerge. A lot of attention is often being paid to the technological aspect of Business Process Management (BPM), but relatively little work has been done concerning the people factor of BPM and the specification of BPM expertise in particular. This study tries to close this gap by proposing a comprehensive BPM expertise model, which consolidates existing theories and related work. This model describes the key attributes characterizing “BPM expertise” and outlines their structure, dynamics, and interrelationships. Understanding BPM expertise is a predecessor to being able to develop and apply it effectively. This is the cornerstone of human capital and talent management in BPM.
Resumo:
Process mining has developed into a popular research discipline and nowadays its associated techniques are widely applied in practice. What is currently ill-understood is how the success of a process mining project can be measured and what the antecedent factors of process mining success are. We consider an improved, grounded understanding of these aspects of value to better manage the effectiveness and efficiency of process mining projects in practice. As such, we advance a model, tailored to the characteristics of process mining projects, which identifies and relates success factors and measures. We draw inspiration from the literature from related fields for the construction of a theoretical, a priori model. That model has been validated and re-specified on the basis of a multiple case study, which involved four industrial process mining projects. The unique contribution of this paper is that it presents the first set of success factors and measures on the basis of an analysis of real process mining projects. The presented model can also serve as a basis for further extension and refinement using insights from additional analyses.
Resumo:
This thesis presents novel techniques for addressing the problems of continuous change and inconsistencies in large process model collections. The developed techniques treat process models as a collection of fragments and facilitate version control, standardization and automated process model discovery using fragment-based concepts. Experimental results show that the presented techniques are beneficial in consolidating large process model collections, specifically when there is a high degree of redundancy.
Resumo:
The previous chapters gave an insightful introduction into the various facets of Business Process Management. We now share a rich understanding of the essential ideas behind designing and managing processes for organizational purposes. We have also learned about the various streams of research and development that have influenced contemporary BPM. As a matter of fact, BPM has become a holistic management discipline. As such, it requires that a plethora of facets needs to be addressed for its successful und sustainable application. This chapter provides a framework that consolidates and structures the essential factors that constitute BPM as a whole. Drawing from research in the field of maturity models, we suggest six core elements of BPM: strategic alignment, governance, methods, information technology, people, and culture. These six elements serve as the structure for this BPM Handbook.
Resumo:
Automated process discovery techniques aim at extracting process models from information system logs. Existing techniques in this space are effective when applied to relatively small or regular logs, but generate spaghetti-like and sometimes inaccurate models when confronted to logs with high variability. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. This leads to a collection of process models – each one representing a variant of the business process – as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity and low fitness. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically using subprocess extraction. Splitting is performed in a controlled manner in order to achieve user-defined complexity or fitness thresholds. Experiments on real-life logs show that the technique produces collections of models substantially smaller than those extracted by applying existing trace clustering techniques, while allowing the user to control the fitness of the resulting models.
Resumo:
Process Modeling is a widely used concept for understanding, documenting and also redesigning the operations of organizations. The validation and usage of process models is however affected by the fact that only business analysts fully understand them in detail. This is in particular a problem because they are typically not domain experts. In this paper, we investigate in how far the concept of verbalization can be adapted from object-role modeling to process models. To this end, we define an approach which automatically transforms BPMN process models into natural language texts and combines different techniques from linguistics and graph decomposition in a flexible and accurate manner. The evaluation of the technique is based on a prototypical implementation and involves a test set of 53 BPMN process models showing that natural language texts can be generated in a reliable fashion.
Resumo:
Determining similarity between business process models has recently gained interest in the business process management community. So far similarity was addressed separately either at semantic or structural aspect of process models. Also, most of the contributions that measure similarity of process models assume an ideal case when process models are enriched with semantics - a description of meaning of process model elements. However, in real life this results in a heavy human effort consuming pre-processing phase which is often not feasible. In this paper we propose an automated approach for querying a business process model repository for structurally and semantically relevant models. Similar to the search on the Internet, a user formulates a BPMN-Q query and as a result receives a list of process models ordered by relevance to the query. We provide a business process model search engine implementation for evaluation of the proposed approach.
Resumo:
In order to execute, study, or improve operating procedures, companies document them as business process models. Often, business process analysts capture every single exception handling or alternative task handling scenario within a model. Such a tendency results in large process specifications. The core process logic becomes hidden in numerous modeling constructs. To fulfill different tasks, companies develop several model variants of the same business process at different abstraction levels. Afterwards, maintenance of such model groups involves a lot of synchronization effort and is erroneous. We propose an abstraction technique that allows generalization of process models. Business process model abstraction assumes a detailed model of a process to be available and derives coarse-grained models from it. The task of abstraction is to tell significant model elements from insignificant ones and to reduce the latter. We propose to learn insignificant process elements from supplementary model information, e.g., task execution time or frequency of task occurrence. Finally, we discuss a mechanism for user control of the model abstraction level – an abstraction slider.
Resumo:
First Asia Pacific Conference, AP-BPM 2013, Beijing, China, August 29-30, 2013. Selected Papers
Resumo:
This presentation will explore how BPM research can seamlessly combine the academic requirement of rigor with the aim to impact the practice of Business Process Management. After a brief introduction into the research agendas as they are perceived by different BPM communities, two research projects will be discussed that illustrate how empirically-informed quantitative and qualitative research, combined with design science, can lead to outcomes that BPM practitioners are willing to adopt. The first project studies the practice of process modeling using Information Systems theory, and demonstrates how a better understanding of this practice can inform the design of modeling notations and methods. The second project studies the adoption of process management within organizations, and leads to models of how organizations can incrementally transition to greater levels of BPM maturity. The presentation will conclude with recommendations for how the BPM research and practitioner communities can increasingly benefit from each other.
Resumo:
In this editorial letter, we provide the readers of Information Systems Management with a background on process design before we discuss the content of the special issue proper. By introducing and describing a so-called process design compass we aim to clarify what developments in the field are taking place and how the papers in this special issue expand on our current knowledge in this domain.
Resumo:
Purpose The purpose of this paper is to foster a common understanding of business process management (BPM) by proposing a set of ten principles that characterize BPM as a research domain and guide its successful use in organizational practice. Design/methodology/approach The identification and discussion of the principles reflects our viewpoint, which was informed by extant literature and focus groups, including 20 BPM experts from academia and practice. Findings We identify ten principles which represent a set of capabilities essential for mastering contemporary and future challenges in BPM. Their antonyms signify potential roadblocks and bad practices in BPM. We also identify a set of open research questions that can guide future BPM research. Research limitation/implication Our findings suggest several areas of research regarding each of the identified principles of good BPM. Also, the principles themselves should be systematically and empirically examined in future studies. Practical implications – Our findings allow practitioners to comprehensively scope their BPM initiatives and provide a general guidance for BPM implementation. Moreover, the principles may also serve to tackle contemporary issues in other management areas. Originality/value This is the first paper that distills principles of BPM in the sense of both good and bad practice recommendations. The value of the principles lies in providing normative advice to practitioners as well as in identifying open research areas for academia, thereby extending the reach and richness of BPM beyond its traditional frontiers.
Resumo:
This book constitutes the proceedings of the Second Asia Pacific Conference on Business Process Management held in Brisbane, QLD, Australia, in July 2014. In all, 33 contributions from 12 countries were submitted. After each submission was reviewed by at least three Program Committee members, nine full papers were accepted for publication in this volume. These nine papers cover various topics that can be categorized under four main research focuses in BPM: process mining, process modeling and repositories, process model comparison, and process analysis.
Resumo:
Empirical evidence shows that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication arises for example when the repository covers multiple variants of the same processes or due to copy-pasting. Previous work has addressed the problem of efficiently retrieving exact clones that can be refactored into shared subprocess models. This article studies the broader problem of approximate clone detection in process models. The article proposes techniques for detecting clusters of approximate clones based on two well-known clustering algorithms: DBSCAN and Hi- erarchical Agglomerative Clustering (HAC). The article also defines a measure of standardizability of an approximate clone cluster, meaning the potential benefit of replacing the approximate clones with a single standardized subprocess. Experiments show that both techniques, in conjunction with the proposed standardizability measure, accurately retrieve clusters of approximate clones that originate from copy-pasting followed by independent modifications to the copied fragments. Additional experiments show that both techniques produce clusters that match those produced by human subjects and that are perceived to be standardizable.