111 resultados para Bindemann, Ernst Christoph.
Resumo:
The aim of this paper is to propose design principles for ambient intelligence (AmI) environments. The question we are investigating is how these environments can be designed to support a group to be able to carry out common goal-oriented activities. The approach we are taking in answering this question is informed by the concept of collective intelligence (CI). We are applying the concept of CI to AmI as we have found it works well in biological and social systems. Examples from nature demonstrate the power of CI stimulated by implicit cues in the environment. We use these examples to derive design principles for AmI environments. By applying these design principles to a concrete scenario, we are able to propose ways to help decrease environmental pollution within urban areas.
Resumo:
The realization of the ambient intelligence (AmI) vision will have a profound impact on our everyday lives and society. AmI applied in contexts like homes or public spaces will not only affect individual users but influence entire groups of users. The question is how we can apply such technologies to persuade groups and individual users. Our approach is to design AmI environments by borrowing a concept which works very well in biological and social systems: Collective Intelligence (CI). The intelligence of a group surpasses the individual intelligences and leads to improved problem solving capabilities of individuals and groups. From nature we borrow examples of cues in the environment to stimulate goal directed collective intelligence (perCues). The application of perCues in AmI environments helps to persuade users to reach a common goal like decreasing environmental pollution. Adopting CI for AmI we blaze a trail for the design of persuasive AmI environments.
Resumo:
The noted 19th century biologist, Ernst Haeckel, put forward the idea that the growth (ontogenesis) of an organism recapitulated the history of its evolutionary development. While this idea is defunct within biology, the idea has been promoted in areas such as education (the idea of an education being the repetition of the civilizations before). In the research presented in this paper, recapitulation is used as a metaphor within computer-aided design as a way of grouping together different generations of spatial layouts. In most CAD programs, a spatial layout is represented as a series of objects (lines, or boundary representations) that stand in as walls. The relationships between spaces are not usually explicitly stated. A representation using Lindenmayer Systems (originally designed for the purpose of modelling plant morphology) is put forward as a way of representing the morphology of a spatial layout. The aim of this research is not just to describe an individual layout, but to find representations that link together lineages of development. This representation can be used in generative design as a way of creating more meaningful layouts which have particular characteristics. The use of genetic operators (mutation and crossover) is also considered, making this representation suitable for use with genetic algorithms.
Resumo:
This is a revised text of the third lecture of the 2014 public lecture series, "The Path Toward a Global Civilzation" hosted by the Institute of Oriental Philosophy on October 2 in Tokyo. Dr Desha is a research principal of the Australian team at the Natural Edge Project which published Factor 5: Transforming the Global Economy through 80% Increase in Resource Productivity (2009) in collaboration with Dr Ernst Ulrich von Weizsacker.
Resumo:
This workshop aims at discussing alternative approaches to resolving the problem of health information fragmentation, partially resulting from difficulties of health complex systems to semantically interact at the information level. In principle, we challenge the current paradigm of keeping medical records where they were created and discuss an alternative approach in which an individual's health data can be maintained by new entities whose sole responsibility is the sustainability of individual-centric health records. In particular, we will discuss the unique characteristics of the European health information landscape. This workshop is also a business meeting of the IMIA Working Group on Health Record Banking.
Resumo:
We examine the 2D plane-strain deformation of initially round, matrix-bonded, deformable single inclusions in isothermal simple shear using a recently introduced hyperelastoviscoplastic rheology. The broad parameter space spanned by the wide range of effective viscosities, yield stresses, relaxation times, and strain rates encountered in the ductile lithosphere is explored systematically for weak and strong inclusions, the effective viscosity of which varies with respect to the matrix. Most inclusion studies to date focused on elastic or purely viscous rheologies. Comparing our results with linear-viscous inclusions in a linear-viscous matrix, we observe significantly different shape evolution of weak and strong inclusions over most of the relevant parameter space. The evolution of inclusion inclination relative to the shear plane is more strongly affected by elastic and plastic contributions to rheology in the case of strong inclusions. In addition, we found that strong inclusions deform in the transient viscoelastic stress regime at high Weissenberg numbers (≥0.01) up to bulk shear strains larger than 3. Studies using the shapes of deformed objects for finite-strain analysis or viscosity-ratio estimation should establish carefully which rheology and loading conditions reflect material and deformation properties. We suggest that relatively strong, deformable clasts in shear zones retain stored energy up to fairly high shear strains. Hence, purely viscous models of clast deformation may overlook an important contribution to the energy budget, which may drive dissipation processes within and around natural inclusions.