734 resultados para tool life
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source. In the initial software, no attempt was made to choose between the results offered or construct a case for retention in the casebase. In this phase of the project, alternative data mining techniques will be explored and evaluated. A process for selecting a unique service life prediction for each query will also be investigated. This report summarises the initial evaluation of several data mining techniques.
Resumo:
The project has further developed two programs for the industry partners related to service life prediction and salt deposition. The program for Queensland Department of Main Roads which predicts salt deposition on different bridge structures at any point in Queensland has been further refined by looking at more variables. It was found that the height of the bridge significantly affects the salt deposition levels only when very close to the coast. However the effect of natural cleaning of salt by rainfall was incorporated into the program. The user interface allows selection of a location in Queensland, followed by a bridge component. The program then predicts the annual salt deposition rate and rates the likely severity of the environment. The service life prediction program for the Queensland Department of Public Works has been expanded to include 10 common building components, in a variety of environments. Data mining procedures have been used to develop the program and increase the usefulness of the application. A Query Based Learning System (QBLS) has been developed which is based on a data-centric model with extensions to provide support for user interaction. The program is based on number of sources of information about the service life of building components. These include the Delphi survey, the CSIRO Holistic model and a school survey. During the project, the Holistic model was modified for each building component and databases generated for the locations of all Queensland schools. Experiments were carried out to verify and provide parameters for the modelling. These included instrumentation of a downpipe, measurements on pH and chloride levels in leaf litter, EIS measurements and chromate leaching from Colorbond materials and dose tests to measure corrosion rates of new materials. A further database was also generated for inclusion in the program through a large school survey. Over 30 schools in a range of environments from tropical coastal to temperate inland were visited and the condition of the building components rated on a scale of 0-5. The data was analysed and used to calculate an average service life for each component/material combination in the environments, where sufficient examples were available.
Resumo:
Much recent research into citizen journalism has focussed on its role in political debate and deliberation. Such research examines important questions about citizen participation in democratic processes – however, it perhaps places undue focus on only one area of journalistic coverage, and presents a challenge which only a small number of citizen journalism projects can realistically hope to meet. A greater opportunity for broad-based citizen involvement in journalistic activities may lie outside of politics, in the coverage of everyday community life. A leading exponent of this approach is the German-based citizen journalism Website myHeimat.de, which provides a nationwide platform for participants to contribute reports about events in their community. myHeimat takes a hyperlocal approach but also allows for content aggregation on specific topics across multiple local communities; Hannover-based newspaper publishing house Madsack has recently acquired a stake in the project. Drawing on extensive interviews with myHeimat CEO Martin Huber and Madsack newspaper editors Peter Taubald and Clemens Wlokas during October 2008, this paper analyses the myHeimat project and examines its applicability beyond rural and regional areas in Germany; it investigates the question of what role citizen journalism may play beyond the political realm.
Resumo:
The effective management of bridge stock involves making decisions as to when to repair, remedy, or do nothing, taking into account the financial and service life implications. Such decisions require a reliable diagnosis as to the cause of distress and an understanding of the likely future degradation. Such diagnoses are based on a combination of visual inspections, laboratory tests on samples and expert opinions. In addition, the choice of appropriate laboratory tests requires an understanding of the degradation mechanisms involved. Under these circumstances, the use of expert systems or evaluation tools developed from “realtime” case studies provides a promising solution in the absence of expert knowledge. This paper addresses the issues in bridge infrastructure management in Queensland, Australia. Bridges affected by alkali silica reaction and chloride induced corrosion have been investigated and the results presented using a mind mapping tool. The analysis highights that several levels of rules are required to assess the mechanism causing distress. The systematic development of a rule based approach is presented. An example of this application to a case study bridge has been used to demonstrate that preliminary results are satisfactory.
Resumo:
n design of bridge structures, it is common to adopt a 100 year design life. However, analysis of a number of case study bridges in Australia has indicated that the actual design life can be significantly reduced due to premature deterioration resulting from exposure to aggressive environments. A closer analysis of the cost of rehabilitation of these structures has raised some interesting questions. What would be the real service life of a bridge exposed to certain aggressive environments? What is the strategy of conducting bridge rehabilitation? And what are the life cycle costs associated with rehabilitation? A research project funded by the CRC for Construction Innovation in Australia is aimed at addressing these issues. This paper presents a concept map for assisting decision makers to appropriately choose the best treatment for bridge rehabilitation affected by premature deterioration through exposure to aggressive environments in Australia. The decision analysis is referred to a whole of life cycle cost analysis by considering appropriate elements of bridge rehabilitation costs. In addition, the results of bridges inspections in Queensland are presented
Resumo:
A need for an efficient life care management of building portfolio is becoming increasingly due to increase in aging building infrastructure globally. Appropriate structural engineering practices along with facility management can assist in optimising the remaining life cycle costs for existing public building portfolio. A more precise decision to either demolish, refurbish, do nothing or rebuilt option for any typical building under investigation is needed. In order to achieve this, the status of health of the building needs to be assessed considering several aspects including economic and supply-demand considerations. An investment decision for a refurbishment project competing with other capital works and/or refurbishment projects can be supported by emerging methodology residual service life assessment. This paper discusses challenges in refurbishment projects of public buildings and with a view towards development of residual service life assessment methodology
Resumo:
With an increase in growing number of aging public building infrastructure globally, there is an opportunity for an efficient life care management rather then mere demolition and rebuild. By carefully implementing appropriate structural engineering practices with facility management, the whole of life cycle costs for public building assets can be optimised and public money can be saved and better utilised elsewhere. A need of decision support tool/methodology which can assist asset manager make better decision among demolish, refurbish, do nothing or rebuilt option for any typical building under consideration is growing in order to optimise maintenance funds. The paper is part of research project focusing on development of such methodology known as residual service life prediction. The paper is mainly focusing on following three major aspects of public building infrastructure; first, issues and challenges in optimisation of maintenance funds, second, residual service life prediction methodology and issues and challenges in the development of such methodology. The paper concludes with the authors’ observations and further research potentials
Resumo:
The endeavour to obtain estimates of durability of components for use in lifecycle assessment or costing and infrastructure and maintenance planning systems is large. The factor method and the reference service life concept provide a very valuable structure, but do not resolve the central dilemma of the need to derive an extensive database of service life. Traditional methods of estimating service life, such as dose functions or degradation models, can play a role in developing this database, however the scale of the problem clearly indicates that individual dose functions cannot be derived for each component in each different local and geographic setting. Thus, a wider range of techniques is required in order to devise reference service life. This paper outlines the approaches being taken in the Cooperative Research Centre for Construction Innovation project to predict reference service life. Approaches include the development of fundamental degradation and microclimate models, the development of a situation-based reasoning ‘engine’ to vary the ‘estimator’ of service life, and the development of a database on expert performance (Delphi study). These methods should be viewed as complementary rather than as discrete alternatives. As discussed in the paper, the situation-based reasoning approach in fact has the possibility of encompassing all other methods.
Resumo:
Queensland Department of Main Roads, Australia, spends approximately A$ 1 billion annually for road infrastructure asset management. To effectively manage road infrastructure, firstly road agencies not only need to optimise the expenditure for data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. This paper presents the results of case studies in using the probability-based method for an integrated approach (i.e. assessing optimal costs of pavement strength data collection; calibrating deterioration prediction models that suit local condition and assessing risk-adjusted budget estimates for road maintenance and rehabilitation for assessing life-cycle budget estimates). The probability concept is opening the path to having the means to predict life-cycle maintenance and rehabilitation budget estimates that have a known probability of success (e.g. produce budget estimates for a project life-cycle cost with 5% probability of exceeding). The paper also presents a conceptual decision-making framework in the form of risk mapping in which the life-cycle budget/cost investment could be considered in conjunction with social, environmental and political issues.
Resumo:
Australia has no nationally accepted building products life cycle inventory (LCI) database for use in building Ecologically Sustainable Development (ESD) assessment (BEA) tools. More information about the sustainability of the supply chain is limited by industry’s lack of real capacity to deliver objective information on process and product environmental impact. Recognition of these deficits emerged during compilation of a National LCI database to inform LCADesign, a prototype 3 dimensional object oriented computer aided design (3-D CAD) commercial building design tool. Development of this Australian LCI represents 24 staff years of effort here since 1995. Further development of LCADesign extensions is proposed as being essential to support key applications demanded from a more holistic theoretical framework calling for modules of new building and construction industry tools. A proposed tool, conceptually called LCADetails, is to serve the building product industries own needs as well as that of commercial building design amongst other industries’ prospective needs. In this paper, a proposition is examined that the existing national LCI database should be further expanded to serve Australian building product industries’ needs as well as to provide details for its client-base from a web based portal containing a module of practical supply and procurement applications. Along with improved supply chain assessment services, this proposed portal is envisaged to facilitate industry environmental life cycle improvement assessment and support decision-making to provide accredited data for operational reporting capabilities, load-based reasoning as well as BEA applications. This paper provides an overview of developments to date, including a novel 3-D CAD information and communications technology (ICT) platform for more holistic integration of existing tools for true cost assessment. Further conceptualisation of future prospects, based on a new holistic life cycle assessment framework LCADevelop, considering stakeholder relationships and their need for a range of complementary tools leveraging automated function off such ICT platforms to inform dimensionally defined operations for such as automotive, civil, transport and industrial applications are also explored.
Resumo:
Manufacture, construction and use of buildings and building materials make a significant environmental impact internally (inside the building), locally (neighbourhood) and globally. Life cycle assessment (LCA) methodology is being applied for evaluating the environmental impact of building/or building materials. One of the major applications of LCA is to identify key issues of a product system from cradle to grave. Key issues identified in an LCA lead one to the right direction in assessing the environmental aspects of a product system and help to identify the areas for improvement of the environmental performance of a product as well. The purpose of this paper is to suggest two methods for identifying key issues using an integrated tool (LCADesign), which has been developed to provide a method of determining the best alternative for reducing environmental impacts from a building or building materials, and compare both methods in the case study. This paper assists the designers or marketers related to building or building materials in their decision making by giving information on activities or alternatives which are identified as key issues for environmental impacts.