335 resultados para plant density
Resumo:
Homo-and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15-triphenylporphyrin (TriPP) on both ends of the ethene-1,2-diyl bridge M 210 (M 2=H 2/Ni, Ni 2, Ni/Zn, H 4, H 2Zn, Zn 2) and 5,15-bis(3,5-di-tert-butylphenyl)porphyrinato-nickel(II) on one end and H 2, Ni, and ZnTriPP on the other (M 211), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni 2 bis(TriPP) complex Ni 210, single crystal X-ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of Ni II porphyrins, and the (E)-C 2H 2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H 410 and H 2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas-phase optimized geometry of Ni 210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is the world’s fifth major cereal crop and holds importance as a construction material, food and fodder source. More recently, the potential of this plant as a biofuel source has been noted. Despite its agronomic importance, the use of sorghum production is being constrained by both biotic and abiotic factors. These challenges could be addressed by the use of genetic engineering strategies to complement conventional breeding techniques. However, sorghum is one of the most recalcitrant crops for genetic modification with the lack of an efficient tissue culture system being amongst the chief reasons. Therefore, the aim of this study was to develop an efficient tissue culture system for establishing regenerable embryogenic cell lines, micropropagation and acclimatisation for Sorghum bicolor and use this to optimise parameters for genetic transformation via Agrobacterium-mediated transformation and microprojectile bombardment. Using five different sorghum cultivars, SA281, 296B, SC49, Wray and Rio, numerous parameters were investigated in an attempt to establish an efficient and reproducible tissue culture and transformation system. Using immature embryos (IEs) as explants, regenerable embryogenic cell lines (ECLs) could only be established from cultivars SA281 and 296B. Large amounts of phenolics were produced from IEs of cultivars, SC49, Wary and Rio, and these compounds severely hindered callus formation and development. Cultivar SA281 also produced phenolics during regeneration. Attempts to suppress the production of these compounds in cultivars SA281 and SC49 using activated charcoal, PVP, ascorbic acid, citric acid and liquid filter paper bridge methods were either ineffective or had a detrimental effect on embryogenic callus formation, development and regeneration. Immature embryos sourced during summer were found to be far more responsive in vitro than those sourced during winter. In an attempt to overcome this problem, IEs were sourced from sorghum grown under summer conditions in either a temperature controlled glasshouse or a growth chamber. However, the performance of these explants was still inferior to that of natural summer-sourced explants. Leaf whorls, mature embryos, shoot tips and leaf primordia were found to be unsuitable as explants for establishing ECLs in sorghum cultivars SA281 and 296B. Using the florets of immature inflorescences (IFs) as explants, however, ECLs were established and regenerated for these cultivars, as well as for cultivar Tx430, using callus induction media, SCIM, and regeneration media, VWRM. The best in vitro responses, from the largest possible sized IFs, were obtained using plants at the FL-2 stage (where the last fully opened leaf was two leaves away from the flag leaf). Immature inflorescences could be stored at 25oC for up to three days without affecting their in vitro responses. Compared to IEs, the IFs were more robust in tissue culture and showed responses which were season and growth condition independent. A micropropagation protocol for sorghum was developed in this study. The optimum plant growth regulator (PGR) combination for the micropropagation of in vitro regenerated plantlets was found to be 1.0 mg/L BAP in combination with 0.5 mg/L NAA. With this protocol, cultivars 296B and SA281 produced an average of 57 and 13 off-shoots per plantlet, respectively. The plantlets were successfully acclimatised and developed into phenotypically normal plants that set seeds. A simplified acclimatisation protocol for in vitro regenerated plantlets was also developed. This protocol involved deflasking in vitro plantlets with at least 2 fully-opened healthy leaves and at least 3 roots longer than 1.5 cm, washing the media from the roots with running tap water, planting in 100 mm pots and placing in plastic trays covered with a clear plastic bag in a plant growth chamber. After seven days, the corners of the plastic cover were opened and the bags were completely removed after 10 days. All plantlets were successfully acclimatised regardless of whether 1:1 perlite:potting mix, potting mix, UC mix or vermiculite were used as potting substrates. Parameters were optimised for Agrobacterium-mediated transformation (AMT) of cultivars SA281, 296B and Tx430. The optimal conditions were the use of Agrobacterium strain LBA4404 at an inoculum density of 0.5 OD600nm, heat shock at 43oC for 3 min, use of the surfactant Pluronic F-68 (0.02% w/v) in the inoculation media with a pH of 5.2 and a 3 day co-cultivation period in dark at 22oC. Using these parameters, high frequencies of transient GFP expression was observed in IEs precultured on callus initiation media for 1-7 days as well as in four weeks old IE- and IF-derived callus. Cultivar SA281 appeared very sensitive to Agrobacterium since all tissue turned necrotic within two weeks post-exposure. For cultivar 296B, GFP expression was observed up to 20 days post co-cultivation but no stably transformed plants were regenerated. Using cultivar Tx430, GFP was expressed for up to 50 days post co-cultivation. Although no stably transformed plants of this cultivar were regenerated, this was most likely due to the use of unsuitable regeneration media. Parameters were optimised for transformation by particle bombardment (PB) of cultivars SA281, 296B and Tx430. The optimal conditions were use of 3-7 days old IEs and 4 weeks old IF callus, 4 hour pre- and post-bombardment osmoticum treatment, use of 0.6 µm gold microparticles, helium pressure of 1500 kPa and target distance of 15 cm. Using these parameters for PB, transient GFP expression was observed for up to 14, 30 and 50 days for cultivars SA281, 296B and Tx430, respectively. Further, the use of PB resulted in less tissue necrosis compared to AMT for the respective cultivars. Despite the presence of transient GFP expression, no stably transformed plants were regenerated. The establishment of regenerable ECLs and the optimization of AMT and PB parameters in this study provides a platform for future efforts to develop an efficient transformation protocol for sorghum. The development of GM sorghum will be an important step towards improving its agronomic properties as well as its exploitation for biofuel production.
Resumo:
Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general.
Resumo:
1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts. 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively. 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato. 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae. 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present. 6 We conclude that herbivore-induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly-identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.
Resumo:
Designing practical rules for controlling invasive species is a challenging task for managers, particularly when species are long-lived, have complex life cycles and high dispersal capacities. Previous findings derived from plant matrix population analyses suggest that effective control of long-lived invaders may be achieved by focusing on killing adult plants. However, the cost-effectiveness of managing different life stages has not been evaluated. We illustrate the benefits of integrating matrix population models with decision theory to undertake this evaluation, using empirical data from the largest infestation of mesquite (Leguminosae: Prosopis spp) within Australia. We include in our model the mesquite life cycle, different dispersal rates and control actions that target individuals at different life stages with varying costs, depending on the intensity of control effort. We then use stochastic dynamic programming to derive cost-effective control strategies that minimize the cost of controlling the core infestation locally below a density threshold and the future cost of control arising from infestation of adjacent areas via seed dispersal. Through sensitivity analysis, we show that four robust management rules guide the allocation of resources between mesquite life stages for this infestation: (i) When there is no seed dispersal, no action is required until density of adults exceeds the control threshold and then only control of adults is needed; (ii) when there is seed dispersal, control strategy is dependent on knowledge of the density of adults and large juveniles (LJ) and broad categories of dispersal rates only; (iii) if density of adults is higher than density of LJ, controlling adults is most cost-effective; (iv) alternatively, if density of LJ is equal or higher than density of adults, management efforts should be spread between adults, large and to a lesser extent small juveniles, but never saplings. Synthesis and applications.In this study, we show that simple rules can be found for managing invasive plants with complex life cycles and high dispersal rates when population models are combined with decision theory. In the case of our mesquite population, focussing effort on controlling adults is not always the most cost-effective way to meet our management objective.
Resumo:
We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.
Resumo:
Pan et al. claim that our results actually support a strong linear positive relationship between productivity and richness, whereas Fridley et al. contend that the data support a strong humped relationship. These responses illustrate how preoccupation with bivariate patterns distracts from a deeper understanding of the multivariate mechanisms that control these important ecosystem properties.
Resumo:
Purpose This thesis is about liveability, place and ageing in the high density urban landscape of Brisbane, Australia. As with other major developed cities around the globe, Brisbane has adopted policies to increase urban residential densities to meet the main liveability and sustainability aim of decreasing car dependence and therefore pollution, as well as to minimise the loss of greenfield areas and habitats to developers. This objective hinges on urban neighbourhoods/communities being liveable places, which residents do not have to leave for everyday living. Community/neighbourhood liveability is an essential ingredient in healthy ageing in place and has a substantial impact upon the safety, independence and well-being of older adults. It is generally accepted that ageing in place is optimal for both older people and the state. The optimality of ageing in place generally assumes that there is a particular quality to environments or standard of liveability in which people successfully age in place. The aim of this thesis was to examine if there are particular environmental qualities or aspects of liveability that test optimality and to better understand the key liveability factors that contribute to successful ageing in place. Method A strength of this thesis is that it draws on two separate studies to address the research question of what makes high density liveable for older people. In Chapter 3, the two methods are identified and differentiated as Method 1 (used in Paper 1) and Method 2 (used in Papers 2, 3, 4 and 5). Method 1 involved qualitative interviews with 24 inner city high density Brisbane residents. The major strength of this thesis is the innovative methodology outlined in the thesis as Method 2. Method 2 involved a case study approach employing qualitative and quantitative methods. Qualitative data was collected using semi-structured, in-depth interviews and time-use diaries completed by participants during the week of tracking. The quantitative data was gathered using Global Positioning Systems for tracking and Geographical Information Systems for mapping and analysis of participants’ activities. The combination of quantitative and qualitative analysis captured both participants’ subjective perceptions of their neighbourhoods and their patterns of movement. This enhanced understanding of how neighbourhoods and communities function and of the various liveability dimensions that contribute to active ageing and ageing in place for older people living in high density environments. Both studies’ participants were inner-city high density residents of Brisbane. The study based on Method 1 drew on a wider age demographic than the study based on Method 2. Findings The five papers presented in this thesis by publication indicate a complex inter-relationship of the factors that make a place liveable. The first three papers identify what is comparable and different between the physical and social factors of high density communities/neighbourhoods. The last two papers explore relationships between social engagement and broader community variables such as infrastructure and the physical built environments that are risk or protective factors relevant to community liveability, active ageing and ageing in place in high density. The research highlights the importance of creating and/or maintaining a barrier-free environment and liveable community for ageing adults. Together, the papers promote liveability, social engagement and active ageing in high density neighbourhoods by identifying factors that constitute liveability and strategies that foster active ageing and ageing in place, social connections and well-being. Recommendations There is a strong need to offer more support for active ageing and ageing in place. While the data analyses of this research provide insight into the lived experience of high density residents, further research is warranted. Further qualitative and quantitative research is needed to explore in more depth, the urban experience and opinions of older people living in urban environments. In particular, more empirical research and theory-building is needed in order to expand understanding of the particular environmental qualities that enable successful ageing in place in our cities and to guide efforts aimed at meeting this objective. The results suggest that encouraging the presence of more inner city retail outlets, particularly services that are utilised frequently in people’s daily lives such as supermarkets, medical services and pharmacies, would potentially help ensure residents fully engage in their local community. The connectivity of streets, footpaths and their role in facilitating the reaching of destinations are well understood as an important dimension of liveability. To encourage uptake of sustainable transport, the built environment must provide easy, accessible connections between buildings, walkways, cycle paths and public transport nodes. Wider streets, given that they take more time to cross than narrow streets, tend to .compromise safety - especially for older people. Similarly, the width of footpaths, the level of buffering, the presence of trees, lighting, seating and design of and distance between pedestrian crossings significantly affects the pedestrian experience for older people and impacts upon their choice of transportation. High density neighbourhoods also require greater levels of street fixtures and furniture for everyday life to make places more useable and comfortable for regular use. The importance of making the public realm useful and habitable for older people cannot be over-emphasised. Originality/value While older people are attracted to high density settings, there has been little empirical evidence linking liveability satisfaction with older people’s use of urban neighbourhoods. The current study examined the relationships between community/neighbourhood liveability, place and ageing to better understand the implications for those adults who age in place. The five papers presented in this thesis add to the understanding of what high density liveable age-friendly communities/ neighbourhoods are and what makes them so for older Australians. Neighbourhood liveability for older people is about being able to age in place and remain active. Issues of ageing in Australia and other areas of the developed world will become more critical in the coming decades. Creating livable communities for all ages calls for partnerships across all levels of government agencies and among different sectors within communities. The increasing percentage of older people in the community will have increasing political influence and it will be a foolish government who ignores the needs of an older society.
Resumo:
Like other major cities, Brisbane (Australia) has adopted policies to increase residential densities to meet the liveability goal of decreasing car dependence. This objective hinges on urban neighbourhoods being amenity-rich spaces, reducing the need for residents to leave their neighbourhood for everyday living. While older people are attracted to urban settings, there has been little empirical evidence linking liveability satisfaction with older people's use of urban neighbourhoods. Using a case study approach employing qualitative (diaries, in-depth interviews) and quantitative (Global Positioning Systems and Geographical Information Systems mapping) methods,this paper explores the effect of the neighbourhood environment and its influence on liveability for older urban people. Reliance on motor vehicles and issues with availability and access to local amenities inhibit local participation for older people. Highlighting these issues furthers our understanding of the landscape planning and design factors that make urban neighbourhoods more liveable for older residents.
Resumo:
Walking as an out-of-home mobility activity is recognised for its contribution to healthy and active ageing. The environment can have a powerful effect on the amount of walking activity undertaken by older people, thereby influencing their capacity to maintain their wellbeing and independence. This paper reports the findings from research examining the experiences of neighbourhood walking for 12 older people from six different inner-city high density suburbs, through analysis of data derived from travel diaries, individual time/space activity maps (created via GPS tracking over a seven-day period and GIS technology), and in-depth interviews. Reliance on motor vehicles, the competing interests of pedestrians and cyclists on shared pathways and problems associated with transit systems, public transport, and pedestrian infrastructure emerged as key barriers to older people venturing out of home on foot. GPS and GIS technology provide new opportunities for furthering understanding of the out-of-home mobility of older populations.
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
The inner city Brisbane suburbs of the West End peninsula are poised for redevelopment. Located within walking distance to CBD workplaces, home to Queensland’s highest value cultural precinct, and high quality riverside parklands, there is currently a once-in-a-lifetime opportunity to redevelop parts of the suburb to create a truly urban neighbourhood. According to a local community association, local residents agree and embrace the concept of high-density living, but are opposed to the high-rise urban form (12 storeys) advocated by the City’s planning authority (BCC, 2011) and would prefer to see medium-rise (5-8 storeys) medium-density built form. Brisbane experienced a major flood event which inundated the peninsula suburbs of West End in summer January 2011. The vulnerability of taller buildings to the vagaries of climate and more extreme weather events and their reliance on main electricity was exposed when power outages immediately before, during and after the flood disaster seriously limited occupants’ access and egress when elevators were disabled. Not all buildings were flooded but dwellings quickly became unliveable due to disabled air-conditioning. Some tall buildings remained uninhabitable for several weeks after the event. This paper describes an innovative design research method applied to the complex problem of resilient, sustainable neighbourhood form in subtropical cities, in which a thorough comparative analysis of a range of multiple-dwelling types has revealed the impact that government policy regarding design of the physical environment has on a community’s resilience. The outcomes advocate the role of climate-responsive design in averting the rising human capital and financial costs of natural disasters and climate change.
Resumo:
The purpose of this paper is to determine and discuss on the plant and machinery valuation syllabus for higher learning education in Malaysia to ensure the practicality of the subject in the real market. There have been limited studies in plant and machinery area, either by scholars or practitioners. Most papers highlighted the methodologies but limited papers discussed on the plant and machinery valuation education. This paper will determine inputs for plant and machinery valuation guidance focussing on the syllabus set up and references for valuers interested in this area of expertise. A qualitative approach via content analysis is conducted to compare international and Malaysian plant and machinery valuation syllabus and suggest improvements for Malaysian syllabus. It is found that there are few higher education institutions in the world that provide plant and machinery valuation courses as part of their property studies syllabus. Further investigation revealed that on the job training is the preferable method for plant and machinery valuation education and based on the valuers experience. The significance of this paper is to increase the level of understanding of plant and machinery valuation criteria and provide suggestions to Malaysian stakeholders with the relevant elements in plant and machinery valuation education syllabus.