293 resultados para function approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider complexity penalization methods for model selection. These methods aim to choose a model to optimally trade off estimation and approximation errors by minimizing the sum of an empirical risk term and a complexity penalty. It is well known that if we use a bound on the maximal deviation between empirical and true risks as a complexity penalty, then the risk of our choice is no more than the approximation error plus twice the complexity penalty. There are many cases, however, where complexity penalties like this give loose upper bounds on the estimation error. In particular, if we choose a function from a suitably simple convex function class with a strictly convex loss function, then the estimation error (the difference between the risk of the empirical risk minimizer and the minimal risk in the class) approaches zero at a faster rate than the maximal deviation between empirical and true risks. In this paper, we address the question of whether it is possible to design a complexity penalized model selection method for these situations. We show that, provided the sequence of models is ordered by inclusion, in these cases we can use tight upper bounds on estimation error as a complexity penalty. Surprisingly, this is the case even in situations when the difference between the empirical risk and true risk (and indeed the error of any estimate of the approximation error) decreases much more slowly than the complexity penalty. We give an oracle inequality showing that the resulting model selection method chooses a function with risk no more than the approximation error plus a constant times the complexity penalty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic models for competing clonotypes of T cells by multivariate, continuous-time, discrete state, Markov processes have been proposed in the literature by Stirk, Molina-París and van den Berg (2008). A stochastic modelling framework is important because of rare events associated with small populations of some critical cell types. Usually, computational methods for these problems employ a trajectory-based approach, based on Monte Carlo simulation. This is partly because the complementary, probability density function (PDF) approaches can be expensive but here we describe some efficient PDF approaches by directly solving the governing equations, known as the Master Equation. These computations are made very efficient through an approximation of the state space by the Finite State Projection and through the use of Krylov subspace methods when evolving the matrix exponential. These computational methods allow us to explore the evolution of the PDFs associated with these stochastic models, and bimodal distributions arise in some parameter regimes. Time-dependent propensities naturally arise in immunological processes due to, for example, age-dependent effects. Incorporating time-dependent propensities into the framework of the Master Equation significantly complicates the corresponding computational methods but here we describe an efficient approach via Magnus formulas. Although this contribution focuses on the example of competing clonotypes, the general principles are relevant to multivariate Markov processes and provide fundamental techniques for computational immunology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes is an increasingly prevalent disease worldwide. Providing early management of the complications can prevent morbidity and mortality in this population. Peripheral neuropathy, a significant complication of diabetes, is the major cause of foot ulceration and amputation in diabetes. Delay in attending to complication of the disease contributes to significant medical expenses for diabetic patients and the community. Early structural changes to the neural components of the retina have been demonstrated to occur prior to the clinically visible retinal vasculature complication of diabetic retinopathy. Additionally visual functionloss has been shown to exist before the ophthalmoscopic manifestations of vasculature damage. The purpose of this thesis was to evaluate the relationship between diabetic peripheral neuropathy and both retinal structure and visual function. The key question was whether diabetic peripheral neuropathy is the potential underlying factor responsible for retinal anatomical change and visual functional loss in people with diabetes. This study was conducted on a cohort with type 2 diabetes. Retinal nerve fibre layer thickness was assessed by means of Optical Coherence Tomography (OCT). Visual function was assessed using two different methods; Standard Automated Perimetry (SAP) and flicker perimetry were performed within the central 30 degrees of fixation. The level of diabetic peripheral neuropathy (DPN) was assessed using two techniques - Quantitative Sensory Testing and Neuropathy Disability Score (NDS). These techniques are known to be capable of detecting DPN at very early stages. NDS has also been shown as a gold standard for detecting 'risk of foot ulceration'. Findings reported in this thesis showed that RNFL thickness, particularly in the inferior quadrant, has a significant association with severity of DPN when the condition has been assessed using NDS. More specifically it was observed that inferior RNFL thickness has the ability to differentiate individuals who are at higher risk of foot ulceration from those who are at lower risk, indicating that RNFL thickness can predict late-staged DPN. Investigating the association between RNFL and QST did not show any meaningful interaction, which indicates that RNFL thickness for this cohort was not as predictive of neuropathy status as NDS. In both of these studies, control participants did not have different results from the type 2 cohort who did not DPN suggesting that RNFL thickness is not a marker for diagnosing DPN at early stages. The latter finding also indicated that diabetes per se, is unlikely to affect the RNFL thickness. Visual function as measured by SAP and flicker perimetry was found to be associated with severity of peripheral neuropathy as measured by NDS. These findings were also capable of differentiating individuals at higher risk of foot ulceration; however, visual function also proved not to be a maker for early diagnosis of DPN. It was found that neither SAP, nor flicker sensitivity have meaningful associations with DPN when neuropathy status was measured using QST. Importantly diabetic retinopathy did not explain any of the findings in these experiments. The work described here is valuable as no other research to date has investigated the association between diabetic peripheral neuropathy and either retinal structure or visual function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.