406 resultados para flexible motion control
Resumo:
Businesses document their operational processes as process models. The common practice is to represent process models as directed graphs. The nodes of a process graph represent activities and directed edges constitute activity ordering constraints. A flexible process graph modeling approach proposes to generalize process graph structure to a hypergraph. Obtained process structure aims at formalization of ad-hoc process control flow. In this paper we discuss aspects relevant to concurrent execution of process activities in a collaborative manner organized as a flexible process graph. We provide a real world flexible process scenario to illustrate the approach.
Resumo:
This paper proposes a method for designing set-point regulation controllers for a class of underactuated mechanical systems in Port-Hamiltonian System (PHS) form. A new set of potential shape variables in closed loop is proposed, which can replace the set of open loop shape variables-the configuration variables that appear in the kinetic energy. With this choice, the closed-loop potential energy contains free functions of the new variables. By expressing the regulation objective in terms of these new potential shape variables, the desired equilibrium can be assigned and there is freedom to reshape the potential energy to achieve performance whilst maintaining the PHS form in closed loop. This complements contemporary results in the literature, which preserve the open-loop shape variables. As a case study, we consider a robotic manipulator mounted on a flexible base and compensate for the motion of the base while positioning the end effector with respect to the ground reference. We compare the proposed control strategy with special cases that correspond to other energy shaping strategies previously proposed in the literature.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.
Resumo:
The use of dedicated spinning wheels that generate gyroscopic forces for reducing the roll motion of ships was considered and tested over 100 years ago. These devices, known as gyrostabilisers, presented a remarkable performance, but they fell into disuse due to their relatively large size and, primarily, due to the inability of the control systems to maintain performance over an extended envelope of sea states and sailing conditions (speed and heading relative to the waves). To date, advances in materials, mechanical design, electrical drives, and computer control systems have resulted in a revitalized interest in gyro-stabilisers for ships. This paper revisits the modelling of the coupled vessel-gyrostabiliser and delves into the associated gyrostabiliser control design problem. It also describes design trade-offs and potential performance limitations. A simulation study based on a navy patrol vessel is presented.
Resumo:
This paper presents a framework for the design of a joint motion controller and a control allocation strategy for dynamic positioning of marine vehicles. The key aspects of the proposed designs are a systematic approach to deal with actuator saturation and to inform the motion controller about saturation. The proposed system uses a mapping that translates the actuator constraint sets into constraint sets at the motion controller level. Hence, while the motion controller addresses the constraints, the control allocation algorithm can solve an unconstrained optimisation problem. The constrained control design is approached using a multivariable anti-wind-up strategy for strictly proper controllers. This is applicable to the implementation of PI and PID type of motion controllers.
Resumo:
Parametric ship roll resonance is a phenomenon where a ship can rapidly develop high roll motion while sailing in longitudinal waves. This effect can be described mathematically by periodic changes of the parameters of the equations of motion, which lead to a bifurcation. In this paper, the control design of an active u-tank stabilizer is carried out using Lyapunov theory. A nonlinear backstepping controller is developed to provide global exponential stability of roll. An extension of commonly used u-tank models is presented to account for large roll angles, and the control design is tested via simulation on a high-fidelity model of a vessel under parametric roll resonance.
Resumo:
This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.
Resumo:
Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time. The unused or remaining capacity of the converters could be used to provide some ancillary functions like harmonic and unbalance mitigation of the power distribution system. As some of these DG sources have wide operating ranges, they need special power converters for grid interfacing. Being a single-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using Matlab/Simulink/PLECS and subsequently it is experimentally validated using a laboratory prototype.
Resumo:
During the early design stages of construction projects, accurate and timely cost feedback is critical to design decision making. This is particularly challenging for cost estimators, as they must quickly and accurately estimate the cost of the building when the design is still incomplete and evolving. State-of-the-art software tools typically use a rule-based approach to generate detailed quantities from the design details present in a building model and relate them to the cost items in a cost estimating database. In this paper, we propose a generic approach for creating and maintaining a cost estimate using flexible mappings between a building model and a cost estimate. The approach uses queries on the building design that are used to populate views, and each view is then associated with one or more cost items. The benefit of this approach is that the flexibility of modern query languages allows the estimator to encode a broad variety of relationships between the design and estimate. It also avoids the use of a common standard to which both designers and estimators must conform, allowing the estimator added flexibility and functionality to their work.
Resumo:
A cylindrical magnetron system and a hybrid inductively coupled plasma-assisted magnetron deposition system were examined experimentally in light of their discharge characteristics with a view to stress the enhanced controllability of the hybrid system. The comparative study has shown that the hybrid magnetron + the inductively coupled plasma system is a flexible, powerful, and convenient tool that has certain advantages as compared with the cylindrical dc magnetrons. In particular, the hybrid system features more linear current-voltage characteristics and the possibility of a bias-independent control of the discharge current.
Resumo:
Characteristics of electrical breakdown of a planar magnetron enhanced with an electromagnet and a hollow-cathode structure, are studied experimentally and numerically. At lower pressures the breakdown voltage shows a dependence on the applied magnetic field, and the voltage necessary to achieve the self-sustained discharge regime can be significantly reduced. At higher pressures, the dependence is less sensitive to the magnetic field magnitude and shows a tendency of increased breakdown voltage at the stronger magnetic fields. A model of the magnetron discharge breakdown is developed with the background gas pressure and the magnetic field used as parameters. The model describes the motion of electrons, which gain energy by passing the electric field across the magnetic field and undergo collisions with neutrals, thus generating new bulk electrons. The electrons are in turn accelerated in the electric field and effectively ionize a sufficient amount of neutrals to enable the discharge self-sustainment regime. The model is based on the assumption about the combined classical and near-wall mechanisms of electron conductivity across the magnetic field, and is consistent with the experimental results. The obtained results represent a significant advance toward energy-efficient multipurpose magnetron discharges.
Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.
Resumo:
This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.
Resumo:
The use of gyro-dynamic forces to counteract the wave-induced roll motion of marine vessels in a seaway was proposed over 100 years ago. These early systems showed a remarkable performance, reporting roll reductions of up to 95% in some sailing conditions. Despite this success, further developments were not pursued since the systems were unable to provide acceptable performance over an extended envelope of sailing and environmental conditions, and the invention of fin roll stabilisers provided a satisfactory alternative. This has been attributed to simplistic controls, heavy drive systems, and large structural mass required to withstand the loads given the low strength materials available at the time. Today, advances in material strength, bearings, motor technology and mechanical design methods, together with powerful signal processing algorithms, has resulted in a revitalized interest in gyro-stabilisers for ships. Advanced control systems have enabled optimisation of restoring torques across a range of wave environments and sailing conditions through adaptive control system design. All of these improvements have resulted in increased spinning speed, lower mass, and dramatically increased stabilising performance. This brief paper provides an overview of recent developments in the design and control of gyro-stabilisers of ship roll motion. In particular, the novel Halcyon Gyro-Stabilisers are introduced, and their performance is illustrated based on a simulation case study for a naval patrol vessel. Given the growing national and global interest in small combatants and patrol vessels, modem gyro-stabilisers may offer a significant technological contribution to the age old problem of comfort and mission operability on small ships, especially at loiter speeds.
Resumo:
This study was designed to examine differences in the coupling dynamics between upper limb motion, physiological tremor and whole body postural sway in young healthy adults. Acceleration of the hand and fingers, forearm EMG activity and postural sway data were recorded. Estimation of the degree of bilateral and limb motion-postural sway coupling was determined by cross correlation, coherence and Cross-ApEn analyses. The results of the analysis revealed that, under postural tremor conditions, there was no significant coupling between limbs, muscles or sway across all metrics of coupling. In contrast, performing a rapid alternating flexion/extension movement about the wrist joint (with one or both limbs) resulted in stronger coupling between limb motion and postural sway. These results support the view that, for physiological tremor responses, the control of postural sway is maintained independent to tremor in the upper limb. However, increasing the level of movement about a distal segment of one arm (or both) leads to increased coupling throughout the body. The basis for this increased coupling would appear to be related to the enhanced neural drive to task-specific muscles within the upper limb.