226 resultados para dietary iron requirements
Resumo:
Diet is thought to account for about 25% of cancers in developed countries. It is well documented that the risks associated with both the breast cancer itself and its treatments are important for women previously treated for breast cancer. Women are at risk of recurrence of the primary disease and prone to develop treatment-induced co-morbidities, some of which are thought to be modified by diet. With a view to making dietary recommendations for the breast cancer patients we encounter in our clinical nursing research, we mined the literature to scope the most current robust evidence concerning the role of the diet in protecting women against the recurrence of breast cancer and its potential to ameliorate some of the longer-term morbidities associated with the disease. We found that the evidence about the role of the diet in breast cancer recurrence is largely inconclusive. However, drawing on international guidelines enabled us to make three definitive recommendations. Women at risk of breast cancer recurrence, or who experience co-morbidities as a result of treatment, should limit their exposure to alcohol, moderate their nutritional intake so it does not contribute to postmenopausal weight gain, and should adhere to a balanced diet. Nursing education planned for breast cancer patients about dietary issues should ideally be individually tailored, based on a good understanding of the international recommendations and the evidence underpinning them
Resumo:
In Uganda, vitamin A deficiency (VAD) and iron deficiency anaemia (IDA) are major public health problems with between 15-32% of children under 5 years of age showing VAD and 73% being anaemic. This is largely due to the fact that the staple food crop of the country, banana, is low in pro-vitamin A and iron, therefore leading to dietary deficiencies. Although worldwide progress has been made to control VAD and IDA through supplementation, food fortification and diet diversification, their long term sustainability and impact in developing countries such as Uganda is limited. The approach taken by researchers at Queensland University of Technology (QUT), Australia, in collaboration with the National Agricultural Research Organization (NARO), Uganda, to address this problem, is to generate consumer acceptable banana varieties with significantly increased levels of pro-vitamin A and iron in the fruit using genetic engineering techniques. Such an approach requires the use of suitable, well characterised genes and promoters for targeted transgene expression. Recently, a new banana phytoene synthase gene (APsy2a) involved in the synthesis of pro-vitamin A (pVA) carotenoids was isolated from a high â-carotene banana (F’ei cv Asupina). In addition, sequences of banana ferritin, an iron storage protein, have been isolated from Cavendish banana. The aim of the research described in this thesis was to evaluate the function of these genes to assess their suitability for the biofortification of banana fruit. In addition, a range of banana-derived promoters were characterised to determine their suitability for controlling the expression of transgenes in banana fruit. Due to the time constraints involved with generating transgenic banana fruit, rice was used as the model crop to investigate the functionality of the banana-derived APsy2a and ferritin genes. Using Agrobacterium-mediated transformation, rice callus was transformed with APsy2a +/- the bacterial-derived carotene desaturase gene (CrtI) each under the control of the constitutive maize poly-ubiquitin promoter (ZmUbi) or seed-specific rice glutelin1 (Gt1) promoter. The maize phytoene synthase (ZmPsy1) gene was included as a control. On selective media, with the exception of ZmUbi-CrtI-transgenic callus, all antibiotic resistant callus displayed a yellow-orange colour from which the presence of â-carotene was demonstrated using Raman spectroscopy. Although the regeneration of plants from yellow-orange callus was difficult, 16 transgenic plants were obtained and characterised from callus transformed with ZmUbi-APys2a alone. At least 50% of the T1 seeds developed a yellow-orange coloured callus which was found to contain levels of â-carotene ranging from 4.6-fold to 72-fold higher than that in non-transgenic rice callus. Using the seed-specific Gt1 promoter, 38 transgenic rice plants were generated from APsy2a-CrtI-transformed callus while 32 plants were regenerated from ZmPsy1-CrtI-transformed callus. However, when analysed for presence of transgene by PCR, all transgenic plants contained the APsy2a, ZmPsy1 or CrtI transgene, with none of the plants found to be co-transformed. Using Raman spectroscopy, no â-carotene was detected in-situ in representative T1 seeds. To investigate the potential of the banana-derived ferritin gene (BanFer1) to enhance iron content, rice callus was transformed with constitutively expressed BanFer1 using the soybean ferritin gene (SoyFer) as a control. A total of 12 and 11 callus lines independently transformed with BanFer1 and SoyFer, respectively, were multiplied and transgene expression was verified by RT-PCR. Pearl’s Prussian blue staining for in-situ detection of ferric iron showed a stronger blue colour in rice callus transformed with BanFer1 compared to SoyFer. Using flame atomic absorption spectrometry, the highest mean amount of iron quantified in callus transformed with BanFer1 was 30-fold while that obtained using the SoyFer was 14-fold higher than the controls. In addition, ~78% of BanFer1-transgenic callus lines and ~27% of SoyFer-transgenic callus lines had significantly higher iron content than the non-transformed controls. Since the genes used for enhancing micronutrient content need to be expressed in banana fruit, the activity of a range of banana-derived, potentially fruit-active promoters in banana was investigated. Using uidA (GUS) as a reporter gene, the function of the Expansin1 (MaExp1), Expansin1 containing the rice actin intron (MaExp1a), Expansin4 (MaExp4), Extensin (MaExt), ACS (MaACS), ACO (MaACO), Metallothionein (MaMT2a) and phytoene synthase (APsy2a) promoters were transiently analysed in intact banana fruit using two transformation methods, particle bombardment and Agrobacterium-mediated infiltration (agro-infiltration). Although a considerable amount of variation in promoter activity was observed both within and between experiments, similar trends were obtained using both transformation methods. The MaExp1 and MaExp1a directed high levels of GUS expression in banana fruit which were comparable to those observed from the ZmUbi and Banana bunchy top virus-derived BT4 promoters that were included as positive controls. Lower levels of promoter activity were obtained in both methods using the MaACO and MaExt promoters while the MaExp4, MaACS, and APsy2a promoters directed the lowest GUS activity in banana fruit. An attempt was subsequently made to use agro-infiltration to assess the expression of pVA biosynthesis genes in banana fruit by infiltrating fruit with constructs in which the ZmUbi promoter controlled the expression of APsy2a +/- CrtI, and with the maize phytoene synthase gene (ZmPsy1) included as a control. Unfortunately, the large amount of variation and inconsistency observed within and between experiments precluded any meaningful conclusions to be drawn. The final component of this research was to assess the level of promoter activity and specificity in non-target tissue. These analyses were done on leaves obtained from glasshouse-grown banana plants stably transformed with MaExp1, MaACO, APsy2a, BT4 and ZmUbi promoters driving the expression of the GUS gene in addition to leaves from a selection of the same transgenic plants which were growing in a field trial in North Queensland. The results from both histochemical and fluorometric GUS assays showed that the MaExp1 and MaACO promoters directed very low GUS activities in leaves of stably transformed banana plants compared to the constitutive ZmUbi and BT4 promoters. In summary, the results from this research provide evidence that the banana phytoene synthase gene (APsy2a) and the banana ferritin gene (BanFer1) are functional, since the constitutive over-expression of each of these transgenes led to increased levels of pVA carotenoids (for APsy2a) and iron content (for BanFer1) in transgenic rice callus. Further work is now required to determine the functionality of these genes in stably-transformed banana fruit. This research also demonstrated that the MaExp1 and MaACO promoters are fruit-active but have low activity in non-target tissue (leaves), characteristics that make them potentially useful for the biofortification of banana fruit. Ultimately, however, analysis of fruit from field-grown transgenic plants will be required to fully evaluate the suitability of pVA biosynthesis genes and the fruit-active promoters for fruit biofortification.
Resumo:
The increase of powerful mobile devices has accelerated the demand for mobile videos. Previous studies in mobile video have focused on understanding of mobile video usage, improvement of video quality, and user interface design in video browsing. However, research focusing on a deep understanding of users’ needs for a pleasing quality delivery of mobile video is lacking. In particular, what quality-delivery mode users prefer and what information relevant to video quality they need requires attention. This paper presents a qualitative interview study with 38 participants to gain an insight into three aspects: influencing factors of user-desired video quality, user-preferred quality-delivery modes, and user-required interaction information of mobile video. The results show that user requirements for video quality are related to personal preference, technology background and video viewing experience, and the preferred quality-delivery mode and interactive mode are diverse. These complex user requirements call for flexible and personalised quality delivery and interaction of mobile video.
Resumo:
Quality, in construction projects should be regarded as the fulfillment of expectation of those contributors involved in such projects. Although a significant amount of quality practices have been introduced within the industry, attainment of reasonable levels of quality in construction projects continues to be an ongoing problem. To date, some research into the introduction and improvement of quality practices and stakeholder management has been undertaken, but so far no major studies have been completed that comprehensively examine how greater consideration of stakeholders’ perspectives of quality can be used to contribute to final project quality outcomes. This paper aims to examine the requirements for development of a framework leading to more effective involvement of stakeholders in quality planning and practices thus ultimately contributing to higher quality outcomes for construction projects. Through an extensive literature review it highlights various perceptions of quality, categorizes quality issues with particular focus on benefits and shortcomings and also examines the viewpoints of major stakeholders on project quality. It proposes a set of criteria to be used as a basis for a quality practice improvement framework, which will provide project managers and owners with the required information and strategic direction to achieve their own and their stakeholders’ targets for implementation of quality practices leading to the achievement of improved quality outcomes on future projects.
Resumo:
Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.
Resumo:
Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.
Resumo:
Previous studies have shown that exercise (Ex) interventions create a stronger coupling between energy intake (EI) and energy expenditure (EE) leading to increased homeostasis of the energy-balance (EB) regulatory system compared to a diet intervention where an un-coupling between EI and EE occurs. The benefits of weight loss from Ex and diet interventions greatly depend on compensatory responses. The present study investigated an 8-week medium-term Ex and diet intervention program (Ex intervention comprised of 500kcal EE five days per week over four weeks at 65-75% maximal heart rate, whereas the diet intervention comprised of a 500kcal decrease in EI five days per week over four weeks) and its effects on compensatory responses and appetite regulation among healthy individuals using a between- and within-subjects design. Effects of an acute dietary manipulation on appetite and compensatory behaviours and whether a diet and/or Ex intervention pre-disposes individuals to disturbances in EB homeostasis were tested. Energy intake at an ad libitum lunch test meal after a breakfast high- and low-energy pre-load (the high energy pre-load contained 556kcal and the low energy pre-load contained 239kcal) were measured at the Baseline (Weeks -4 to 0) and Intervention (Weeks 0 to 4) phases in 13 healthy volunteers (three males and ten females; mean age 35 years [sd + 9] and mean BMI 25 kg/m2 [sd + 3.8]) [participants in each group included Ex=7, diet=5 (one female in the diet group dropped out midway), thus, 12 participants completed the study]. At Weeks -4, 0 and 4, visual analogue scales (VAS) were used to assess hunger and satiety and liking and wanting (L&W) for nutrient and taste preferences using a computer-based system (E-Prime v1.1.4). Ad libitum test meal EI was consistently lower after the HE pre-load compared to the LE pre-load. However, this was not consistent during the diet intervention however. A pre-load x group interaction on ad libitum test meal EI revealed that during the intervention phase the Ex group showed an improved sensitivity to detect the energy content between the two pre-loads and improved compensation for the ad libitum test meal whereas the diet group’s ability to differentiate between the two pre-loads decreased and showed poorer compensation (F[1,10]=2.88, p-value not significant). This study supports previous findings of the effect Ex and diet interventions have on appetite and compensatory responses; Ex increases and diet decreases energy balance sensitivity.
Resumo:
The effect of sample geometry on the melting rates of burning iron rods was assessed. Promoted-ignition tests were conducted with rods having cylindrical, rectangular, and triangular cross-sectional shapes over a range of cross-sectional areas. The regression rate of the melting interface (RRMI) was assessed using a statistical approach which enabled the quantification of confidence levels for the observed differences in RRMI. Statistically significant differences in RRMI were observed for rods with the same cross-sectional area but different cross-sectional shape. The magnitude of the proportional difference in RRMI increased with the cross-sectional area. Triangular rods had the highest RRMI, followed by rectangular rods, and then cylindrical rods. The dependence of RRMI on rod shape is shown to relate to the action of molten metal at corners. The corners of the rectangular and triangular rods melted faster than the faces due to their locally higher surface area to volume ratios. This phenomenon altered the attachment geometry between liquid and solid phases, increasing the surface area available for heat transfer, causing faster melting. Findings relating to the application of standard flammability test results in industrial situations are also presented.
Resumo:
The Queensland Building Services Authority (QBSA) regulates the construction industry in Queensland, Australia, with licensing requirements creating differential financial reporting obligations, depending on firm size. Economic theories of regulation and behaviour provide a framework for investigating effects of the financial constraints and financial reporting requirements imposed by QBSA licensing. Data are analysed for all small and medium construction entities operating in Queensland between 2001 and 2006. Findings suggesting that construction licensees are categorizing themselves as smaller to avoid the more onerous and costly financial reporting of higher licensee categories are consistent with US findings from the 2002 Sarbanes-Oxley (SOX) regulation which created incentives for small firms to stay small to avoid the costs of compliance with more onerous financial reporting requirements. Such behaviour can have the undesirable economic consequences of adversely affecting employment, investment, wealth creation and financial stability. Insights and implications from the analysed QBSA processes are important for future policy reform and design, and useful to be considered where similar regulatory approaches are planned.
Sensing properties of e-beam evaporated nanostructured pure and iron-doped tungsten oxide thin films
Resumo:
Gas sensing properties of nanostructured pure and iron-doped WO3 thin films are discussed. Electron beam evaporation technique has been used to obtain nanostructured thin films of WO3 and WO3:Fe with small grain size and porosity. Atomic force microscopy has been employed to study the microstructure. High sensitivity of both films towards NO2 is observed. Doping of the tungsten oxide film with Fe decreased the material resistance by a factor of about 30 when exposed to 5 ppm NO2. The high sensitivity is attributed to an improved microstructure of the films obtained through e-beam evaporation technique, and subsequent annealing at 300oC for 1 hour.
Resumo:
Precise protein quantification is essential in clinical dietetics, particularly in the management of renal, burn and malnourished patients. The EP-10 was developed to expedite the estimation of dietary protein for nutritional assessment and recommendation. The main objective of this study was to compare the validity and efficacy of the EP-10 with the American Dietetic Association’s “Exchange List for Meal Planning” (ADA-7g) in quantifying dietary protein intake, against computerised nutrient analysis (CNA). Protein intake of 197 food records kept by healthy adult subjects in Singapore was determined thrice using three different methods – (1) EP-10, (2) ADA-7g and (3) CNA using SERVE program (Version 4.0). Assessments using the EP-10 and ADA-7g were performed by two assessors in a blind crossover manner while a third assessor performed the CNA. All assessors were blind to each other’s results. Time taken to assess a subsample (n=165) using the EP-10 and ADA-7g was also recorded. Mean difference in protein intake quantification when compared to the CNA was statistically non-significant for the EP-10 (1.4 ± 16.3 g, P = .239) and statistically significant for the ADA-7g (-2.2 ± 15.6 g, P = .046). Both the EP-10 and ADA-7g had clinically acceptable agreement with the CNA as determined via Bland-Altman plots, although it was found that EP-10 had a tendency to overestimate with protein intakes above 150 g. The EP-10 required significantly less time for protein intake quantification than the ADA-7g (mean time of 65 ± 36 seconds vs. 111 ± 40 seconds, P < .001). The EP-10 and ADA-7g are valid clinical tools for protein intake quantification in an Asian context, with EP-10 being more time efficient. However, a dietician’s discretion is needed when the EP-10 is used on protein intakes above 150g.
Resumo:
In this paper, a generic and flexible optimisation methodology is developed to represent, model, solve and analyse the iron ore supply chain system by integrating of iron ore shipment, stockpiles and railing within a whole system. As a result, an integrated train-stockpile-ship timetable is created and optimised for improving efficiency of overall supply chain system. The proposed methodology provides better decision making on how to significantly improve rolling stock utilisation with the best cost-effectiveness ratio. Based on extensive computational experiments and analysis, insightful and quantitative advices are suggested for iron ore mine industry practitioners. The proposed methodology contributes to the sustainability of the environment by reducing pollution due to better utilisation of transportation resources and fuel.
Resumo:
This presentation explores the requirements and capabilities of Unmanned Aircraft Systems (UAS) for applications in Law Enforcement and Search and Rescue.
Resumo:
Service-oriented Architectures (SOA) and Web services leverage the technical value of solutions in the areas of distributed systems and cross-enterprise integration. The emergence of Internet marketplaces for business services is driving the need to describe services, not only from a technical level, but also from a business and operational perspective. While, SOA and Web services reside in an IT layer, organizations owing Internet marketplaces are requiring advertising and trading business services which reside in a business layer. As a result, the gap between business and IT needs to be closed. This paper presents USDL (Unified Service Description Language), a specification language to describe services from a business, operational and technical perspective. USDL plays a major role in the Internet of Services to describe tradable services which are advertised in electronic marketplaces. The language has been tested using two service marketplaces as use cases.
Resumo:
The emergence of semantic technologies to deal with the underlying meaning of things, instead of a purely syntactical representation, has led to new developments in various fields, including business process modeling. Inspired by artificial intelligence research, technologies for semantic Web services have been proposed and extended to process modeling. However, the applicablility of semantic Web services for semantic business processes is limited because business processes encompass wider requirements of business than Web services. In particular, processes are concerned with the composition of tasks, that is, in which order activities are carried out, regardless of their implementation details; resources assigned to carry out tasks, such as machinery, people, and goods; data exchange; and security and compliance concerns.