116 resultados para content-based image retrieval


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an Image Based Visual Servo control design for Fixed Wing Unmanned Aerial Vehicles tracking locally linear infrastructure in the presence of wind using a body fixed imaging sensor. Visual servoing offers improved data collection by posing the tracking task as one of controlling a feature as viewed by the inspection sensor, although is complicated by the introduction of wind as aircraft heading and course angle no longer align. In this work it is shown that the effects of wind alter the desired line angle required for continuous tracking to equal the wind correction angle as would be calculated to set a desired course. A control solution is then sort by linearizing the interaction matrix about the new feature pose such that kinematics of the feature can be augmented with the lateral dynamics of the aircraft, from which a state feedback control design is developed. Simulation results are presented comparing no compensation, integral control and the proposed controller using the wind correction angle, followed by an assessment of response to atmospheric disturbances in the form of turbulence and wind gusts

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract: Texture enhancement is an important component of image processing, with extensive application in science and engineering. The quality of medical images, quantified using the texture of the images, plays a significant role in the routine diagnosis performed by medical practitioners. Previously, image texture enhancement was performed using classical integral order differential mask operators. Recently, first order fractional differential operators were implemented to enhance images. Experiments conclude that the use of the fractional differential not only maintains the low frequency contour features in the smooth areas of the image, but also nonlinearly enhances edges and textures corresponding to high-frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we applied the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other fractional differential operators, our new algorithms provide higher signal to noise values, which leads to superior image quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce a new image-based visual navigation algorithm that allows the Cartesian velocity of a robot to be defined with respect to a set of visually observed features corresponding to previously unseen and unmapped world points. The technique is well suited to mobile robot tasks such as moving along a road or flying over the ground. We describe the algorithm in general form and present detailed simulation results for an aerial robot scenario using a spherical camera and a wide angle perspective camera, and present experimental results for a mobile ground robot.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a computationally efficient image border pixel based watermark embedding scheme for medical images. We considered the border pixels of a medical image as RONI (region of non-interest), since those pixels have no or little interest to doctors and medical professionals irrespective of the image modalities. Although RONI is used for embedding, our proposed scheme still keeps distortion at a minimum level in the embedding region using the optimum number of least significant bit-planes for the border pixels. All these not only ensure that a watermarked image is safe for diagnosis, but also help minimize the legal and ethical concerns of altering all pixels of medical images in any manner (e.g, reversible or irreversible). The proposed scheme avoids the need for RONI segmentation, which incurs capacity and computational overheads. The performance of the proposed scheme has been compared with a relevant scheme in terms of embedding capacity, image perceptual quality (measured by SSIM and PSNR), and computational efficiency. Our experimental results show that the proposed scheme is computationally efficient, offers an image-content-independent embedding capacity, and maintains a good image quality

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Entity-oriented retrieval aims to return a list of relevant entities rather than documents to provide exact answers for user queries. The nature of entity-oriented retrieval requires identifying the semantic intent of user queries, i.e., understanding the semantic role of query terms and determining the semantic categories which indicate the class of target entities. Existing methods are not able to exploit the semantic intent by capturing the semantic relationship between terms in a query and in a document that contains entity related information. To improve the understanding of the semantic intent of user queries, we propose concept-based retrieval method that not only automatically identifies the semantic intent of user queries, i.e., Intent Type and Intent Modifier but introduces concepts represented by Wikipedia articles to user queries. We evaluate our proposed method on entity profile documents annotated by concepts from Wikipedia category and list structure. Empirical analysis reveals that the proposed method outperforms several state-of-the-art approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Process-Aware Information Systems (PAISs) support executions of operational processes that involve people, resources, and software applications on the basis of process models. Process models describe vast, often infinite, amounts of process instances, i.e., workflows supported by the systems. With the increasing adoption of PAISs, large process model repositories emerged in companies and public organizations. These repositories constitute significant information resources. Accurate and efficient retrieval of process models and/or process instances from such repositories is interesting for multiple reasons, e.g., searching for similar models/instances, filtering, reuse, standardization, process compliance checking, verification of formal properties, etc. This paper proposes a technique for indexing process models that relies on their alternative representations, called untanglings. We show the use of untanglings for retrieval of process models based on process instances that they specify via a solution to the total executability problem. Experiments with industrial process models testify that the proposed retrieval approach is up to three orders of magnitude faster than the state of the art.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Clustering identities in a broadcast video is a useful task to aid in video annotation and retrieval. Quality based frame selection is a crucial task in video face clustering, to both improve the clustering performance and reduce the computational cost. We present a frame work that selects the highest quality frames available in a video to cluster the face. This frame selection technique is based on low level and high level features (face symmetry, sharpness, contrast and brightness) to select the highest quality facial images available in a face sequence for clustering. We also consider the temporal distribution of the faces to ensure that selected faces are taken at times distributed throughout the sequence. Normalized feature scores are fused and frames with high quality scores are used in a Local Gabor Binary Pattern Histogram Sequence based face clustering system. We present a news video database to evaluate the clustering system performance. Experiments on the newly created news database show that the proposed method selects the best quality face images in the video sequence, resulting in improved clustering performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In outdoor environments shadows are common. These typically strong visual features cause considerable change in the appearance of a place, and therefore confound vision-based localisation approaches. In this paper we describe how to convert a colour image of the scene to a greyscale invariant image where pixel values are a function of underlying material property not lighting. We summarise the theory of shadow invariant images and discuss the modelling and calibration issues which are important for non-ideal off-the-shelf colour cameras. We evaluate the technique with a commonly used robotic camera and an autonomous car operating in an outdoor environment, and show that it can outperform the use of ordinary greyscale images for the task of visual localisation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whole-image descriptors such as GIST have been used successfully for persistent place recognition when combined with temporal filtering or sequential filtering techniques. However, whole-image descriptor localization systems often apply a heuristic rather than a probabilistic approach to place recognition, requiring substantial environmental-specific tuning prior to deployment. In this paper we present a novel online solution that uses statistical approaches to calculate place recognition likelihoods for whole-image descriptors, without requiring either environmental tuning or pre-training. Using a real world benchmark dataset, we show that this method creates distributions appropriate to a specific environment in an online manner. Our method performs comparably to FAB-MAP in raw place recognition performance, and integrates into a state of the art probabilistic mapping system to provide superior performance to whole-image methods that are not based on true probability distributions. The method provides a principled means for combining the powerful change-invariant properties of whole-image descriptors with probabilistic back-end mapping systems without the need for prior training or system tuning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whole image descriptors have recently been shown to be remarkably robust to perceptual change especially compared to local features. However, whole-image-based localization systems typically rely on heuristic methods for determining appropriate matching thresholds in a particular environment. These environment-specific tuning requirements and the lack of a meaningful interpretation of these arbitrary thresholds limits the general applicability of these systems. In this paper we present a Bayesian model of probability for whole-image descriptors that can be seamlessly integrated into localization systems designed for probabilistic visual input. We demonstrate this method using CAT-Graph, an appearance-based visual localization system originally designed for a FAB-MAP-style probabilistic input. We show that using whole-image descriptors as visual input extends CAT-Graph’s functionality to environments that experience a greater amount of perceptual change. We also present a method of estimating whole-image probability models in an online manner, removing the need for a prior training phase. We show that this online, automated training method can perform comparably to pre-trained, manually tuned local descriptor methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantitative determination of modification of primary sediment features, by the activity of organisms (i.e., bioturbation) is essential in geosciences. Some methods proposed since the 1960s are mainly based on visual or subjective determinations. The first semiquantitative evaluations of the Bioturbation Index, Ichnofabric Index, or the amount of bioturbation were attempted, in the best cases using a series of flashcards designed in different situations. Recently, more effective methods involve the use of analytical and computational methods such as X-rays, magnetic resonance imaging or computed tomography; these methods are complex and often expensive. This paper presents a compilation of different methods, using Adobe® Photoshop® software CS6, for digital estimation that are a part of the IDIAP (Ichnological Digital Analysis Images Package), which is an inexpensive alternative to recently proposed methods, easy to use, and especially recommended for core samples. The different methods — “Similar Pixel Selection Method (SPSM)”, “Magic Wand Method (MWM)” and the “Color Range Selection Method (CRSM)” — entail advantages and disadvantages depending on the sediment (e.g., composition, color, texture, porosity, etc.) and ichnological features (size of traces, infilling material, burrow wall, etc.). The IDIAP provides an estimation of the amount of trace fossils produced by a particular ichnotaxon, by a whole ichnocoenosis or even for a complete ichnofabric. We recommend the application of the complete IDIAP to a given case study, followed by selection of the most appropriate method. The IDIAP was applied to core material recovered from the IODP Expedition 339, enabling us, for the first time, to arrive at a quantitative estimation of the discrete trace fossil assemblage in core samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we propose a new multi-class steganalysis for binary image. The proposed method can identify the type of steganographic technique used by examining on the given binary image. In addition, our proposed method is also capable of differentiating an image with hidden message from the one without hidden message. In order to do that, we will extract some features from the binary image. The feature extraction method used is a combination of the method extended from our previous work and some new methods proposed in this paper. Based on the extracted feature sets, we construct our multi-class steganalysis from the SVM classifier. We also present the empirical works to demonstrate that the proposed method can effectively identify five different types of steganography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Early works on Private Information Retrieval (PIR) focused on minimizing the necessary communication overhead. They seemed to achieve this goal but at the expense of query response time. To mitigate this weakness, protocols with secure coprocessors were introduced. They achieve optimal communication complexity and better online processing complexity. Unfortunately, all secure coprocessor-based PIR protocols require heavy periodical preprocessing. In this paper, we propose a new protocol, which is free from the periodical preprocessing while offering the optimal communication complexity and almost optimal online processing complexity. The proposed protocol is proven to be secure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the following problem: members in a dynamic group retrieve their encrypted data from an untrusted server based on keywords and without any loss of data confidentiality and member’s privacy. In this paper, we investigate common secure indices for conjunctive keyword-based retrieval over encrypted data, and construct an efficient scheme from Wang et al. dynamic accumulator, Nyberg combinatorial accumulator and Kiayias et al. public-key encryption system. The proposed scheme is trapdoorless and keyword-field free. The security is proved under the random oracle, decisional composite residuosity and extended strong RSA assumptions.