156 resultados para ZETA POTENTIALS
Resumo:
The principal focus of this thesis is the representation of a significant creative practice in relation to the design and installation of the Location-Based Game, SCOOT. This project demonstrates new understandings relating to the contingencies and potentials for transferring positive aspects of digital gameplay to everyday physical environments in an effort to reveal hidden histories and revitalise peoples’ interactions with their local urban spaces.
Resumo:
In many English-speaking countries bilingual and multilingual speakers of English are integrated into mainstream classrooms, where the teacher is expected to help them “catch up” with speakers of the dominant language. In this presentation, I argue that we teach in culturally and linguistically diverse societies that are increasingly interconnected through a broadened range of multimodal and digital textual practices. Intuitively, one might expect that multimodal approaches are more equitable than exclusively print-based approaches because learners can draw from a broader range of semiotic resources. Yet the potentials of using multiple modes and new digital media to provide greater access to multiliteracies cannot be assumed. I draw on a case study of a multilingual language learner, Paweni, a Thai immigrant, describing how she and her peers negotiated cultural and linguistic difference. These encounters occur during multiliteracies lessons involving both print and digital texts. I theorise a “dialectic of access” to explain the reciprocal interaction between the agency of learners, modes, and media. I apply Giddens’ structuration theory to take into account the social structures – domination, signification, and legitimation – that played an important role in this dialectic of access.
Resumo:
Collaboration between faculty and librarians is an important topic of discussion and research among academic librarians. These partnerships between faculty and librarians are vital for enabling students to become lifelong learners through their information literacy education. This research developed an understanding of academic collaborators by analyzing a community college faculty's teaching social networks. A teaching social network, an original term generated in this study, is comprised of communications that influence faculty when they design and deliver their courses. The communication may be formal (e.g., through scholarly journals and professional development activities) and informal (e.g., through personal communication) through their network elements. Examples of the elements of a teaching social network may be department faculty, administration, librarians, professional development, and students. This research asked 'What is the nature of faculty's teaching social networks and what are the implications for librarians?' This study moves forward the existing research on collaboration, information literacy, and social network analysis. It provides both faculty and librarians with added insight into their existing and potential relationships. This research was undertaken using mixed methods. Social network analysis was the quantitative data collection methodology and the interview method was the qualitative technique. For the social network analysis data, a survey was sent to full-time faculty at Las Positas College, a community college, in California. The survey gathered the data and described the teaching social networks for faculty with respect to their teaching methods and content taught. Semi-structured interviews were conducted following the survey with a sub-set of survey respondents to understand why specific elements were included in their teaching social networks and to learn of ways for librarians to become an integral part of the teaching social networks. The majority of the faculty respondents were moderately influenced by the elements of their network except the majority of the potentials were weakly influenced by the elements in their network in their content taught. The elements with the most influence on both teaching methods and content taught were students, department faculty, professional development, and former graduate professors and coursework. The elements with the least influence on both aspects were public or academic librarians, and social media. The most popular roles for the elements were conversations about teaching, sharing ideas, tips for teaching, insights into teaching, suggestions for ways of teaching, and how to engage students. Librarians' weakly influenced faculty in their teaching methods and their content taught. The motivating factors for collaboration with librarians were that students learned how to research, students' research projects improved, faculty saved time by having librarians provide the instruction to students, and faculty built strong working relationships with librarians. The challenges of collaborating with librarians were inadequate teaching techniques used when librarians taught research orientations and lack of time. Ways librarians can be more integral in faculty's teaching social networks included: more workshops for faculty, more proactive interaction with faculty, and more one-on-one training sessions for faculty. Some of the recommendations for the librarians from this study were develop a strong rapport with faculty, librarians should build their services in information literacy from the point of view of the faculty instead of from the librarian perspective, use staff development funding to attend conferences and workshops to improve their teaching, develop more training sessions for faculty, increase marketing efforts of the librarian's instructional services, and seek grant opportunities to increase funding for the library. In addition, librarians and faculty should review the definitions of information literacy and move from a skills based interpretation to a learning process.
Resumo:
Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of respective molecules that constitutes the fuel. Previous studies demonstrated the relationship between organic fraction of PM and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analysed in more detail to explore the role different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact Time of Flight Aerosol Mass Spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.
Resumo:
Polycrystalline gold electrodes of the kind that are routinely used in analysis and catalysis in aqueous media are often regarded as exhibiting relatively simple double-layer charging/discharging and monolayer oxide formation/ removal in the positive potential region. Application of the large amplitude Fourier transformed alternating current (FT-ac) voltammetric technique that allows the faradaic current contribution of fast electron-transfer processes to be emphasized in the higher harmonic components has revealed the presence of well-defined faradaic (premonolayer oxidation) processes at positive potentials in the double-layer region in acidic and basic media which are enhanced by electrochemical activation. These underlying quasi-reversible interfacial electron-transfer processes may mediate the course of electrocatalytic oxidation reactions of hydrazine, ethylene glycol, and glucose on gold electrodes in aqueous media. The observed responses support key assumptions associated with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis.
Resumo:
Semi-conducting phase I CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane), which is of considerable interest as a switching device for memory storage materials, can be electrocrystallized from CH3CN via two distinctly different pathways when TCNQ is reduced to TCNQ˙− in the presence of [Cu(MeCN)4]+. The first pathway, identified in earlier studies, occurs at potentials where TCNQ is reduced to TCNQ˙− and involves a nucleation–growth mechanism at preferred sites on the electrode to produce arrays of well separated large branched needle-shaped phase I CuTCNQ crystals. The second pathway, now identified at more negative potentials, generates much smaller needle-shaped phase I CuTCNQ crystals. These electrocrystallize on parts of the surface not occupied in the initial process and give rise to film-like characteristics. This process is attributed to the reduction of Cu+[(TCNQ˙−)(TCNQ)] or a stabilised film of TCNQ via a solid–solid conversion process, which also involves ingress of Cu+via a nucleation–growth mechanism. The CuTCNQ surface area coverage is extensive since it occurs at all areas of the electrode and not just at defect sites that dominate the crystal formation sites for the first pathway. Infrared spectra, X-ray diffraction, surface plasmon resonance, quartz crystal microbalance, scanning electron microscopy and optical image data all confirm that two distinctly different pathways are available to produce the kinetically-favoured and more highly conducting phase I CuTCNQ solid, rather than the phase II material.
Superactivation of metal electrode surfaces and its relevance to COads oxidation at fuel cell anodes
Resumo:
The inhibiting effect of COads on platinum-based anodes is a major problem in the development of ambient temperature, polyelectrolyte membrane-type fuel cells. One of the unusual features of the response for the oxidative removal of the species in question is that the response observed for this reaction in the positive sweep is highly dependent on the CO admission potential, for example, when the COads is formed in the Hads region it undergoes oxidation at unusually low potentials. Such behaviour is attributed here to hydrogen activation of the platinum surface, with the result that oxide mediators (and COads oxidation) occurs at an earlier stage of the positive sweep. It is also demonstrated, for both platinum and gold in acid solution, that dramatic premonolayer oxidation responses may be observed following suitable preactivation of the electrode surfaces. It is suggested that the defect state of a solid electrode surface is an important variable whose investigation may yield improved fuel cell anode performance.
Resumo:
The electrodeposition of silver from two ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) and N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ([C4mPyr][TFSI]), and an aqueous KNO3 solution on a glassy carbon electrode was undertaken. It was found by cyclic voltammetry that the electrodeposition of silver proceeds through nucleation–growth kinetics. Analysis of chronoamperometric data indicated that the nucleation–growth mechanism is instantaneous at all potentials in the case of [BMIm][BF4] and [C4mPyr][TFSI], and instantaneous at low overpotentials tending to progressive at high overpotentials for KNO3. Significantly, under ambient conditions, the silver electrodeposition mechanism changes to progressive nucleation and growth in [C4mPyr][TFSI], which is attributed to the uptake of atmospheric water in the IL. It was found that these differences in the growth mechanism impact significantly on the morphology of the resultant electrodeposit which is characterised ex situ by scanning electron microscopy and X-ray diffraction.
Resumo:
We demonstrate a rapid synthesis of gold nanoparticles using hydroquinone as a reducing agent under acidic conditions without the need for precursor seed particles. The nanoparticle formation process is facilitated by the addition of NaOH to a solution containing HAuCl4 and hydroquinone to locally change the pH; this enhances the reducing capability of hydroquinone to form gold nucleation centres, after which further growth of gold can take place through an autocatalytic mechanism. The stability of the nanoparticles is highly dependent on the initial solution pH, and both the concentration of added NaOH and hydroquinone present in solution. The gold nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, and zeta potential measurements. It was found that under optimal conditions that stable aqueous suspensions of 20 nm diameter nanoparticles can be achieved where benzoquinone, the oxidized product of hydroquinone, acts as a capping agent preventing nanoparticles aggregation.
Resumo:
The higher harmonic components available from large-amplitude Fourier-transformed alternating current (FT-ac) voltammetry enable the surface active state of a copper electrode in basic media to be probed in much more detail than possible with previously used dc methods. In particular, the absence of capacitance background current allows low-level Faradaic current contributions of fast electron-transfer processes to be detected; these are usually completely undetectable under conditions of dc cyclic voltammetry. Under high harmonic FT-ac voltammetric conditions, copper electrodes exhibit well-defined and reversible premonolayer oxidation responses at potentials within the double layer region in basic 1.0 M NaOH media. This process is attributed to oxidation of copper adatoms (Cu*) of low bulk metal lattice coordination numbers to surface-bonded, reactive hydrated oxide species. Of further interest is the observation that cathodic polarization in 1.0 M NaOH significantly enhances the current detected in each of the fundamental to sixth FT-ac harmonic components in the Cu*/Cu hydrous oxide electron-transfer process which enables the underlying electron transfer processes in the higher harmonics to be studied under conditions where the dc capacitance response is suppressed; the results support the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. The underlying quasi-reversible interfacial Cu*/Cu hydrous oxide process present under these conditions is shown to mediate the reduction of nitrate at a copper electrode, while the mediator for the hydrazine oxidation reaction appears to involve a different mediator or active state redox couple. Use of FT-ac voltammetry offers prospects for new insights into the nature of active sites and electrocatalysis at the electrode/solution interface of Group 11 metals in aqueous media.
Resumo:
In this work it is demonstrated that Pt electrodes can be activated by cathodic polarisation in the hydrogen evolution region which makes it prone to oxidation at potentials below that of bulk oxide formation. When an activated Pt electrode is placed in an aqueous HAuCl4 solution the electroless deposition of Au onto the surface of the electrode is observed and confirmed by cyclic voltammetry and XPS measurements. It is demonstrated that the oxidation of active Pt surface atoms provides the driving force for the spontaneous reduction of Au3+ ions into metallic Au to generate a Pt/Au surface which is highly active for the electro-oxidation of ethanol.
Resumo:
The creation of electrocatalysts based on noble metals has received a significant amount of research interest due to their extensive use as fuel cell catalysts and electrochemical sensors. There have been many attempts to improve the activity of these metals through creating nanostructures, as well as post-synthesis treatments based on chemical, electrochemical, sonochemical and thermal approaches. In many instances these methods result in a material with active surface states, which can be considered to be adatoms or clusters of atoms on the surface that have a low lattice co-ordination number making them more prone to electrochemical oxidation at a wide range of potentials that are significantly less positive than those of their bulk metal counterparts. This phenomenon has been termed pre-monolayer oxidation and has been reported to occur on a range of metallic surfaces. In this work we present findings on the presence of active sites on Pd that has been: evaporated as a thin film; electrodeposited as nanostructures; as well as commercially available Pd nanoparticles supported on carbon. Significantly, advantage is taken of the low oxidation potential of these active sites whereby bimetallic surfaces are created by the spontaneous deposition of Ag from AgNO3 to generate Pd/Ag surfaces. Interestingly this approach does not increase the surface area of the original metal but has significant implications for its further use as an electrode material. It results in the inhibition or promotion of electrocatalytic activity which is highly dependent on the reaction of interest. As a general approach the decoration of active catalytic materials with less active metals for a particular reaction also opens up the possibility of investigating the role of the initially present active sites on the surface and identifying the degree to which they are responsible for electrocatalytic activity.
Resumo:
This study presented a novel method for purification of three different grades of diatomite from China by scrubbing technique using sodiumhexametaphosphate (SHMP) as dispersant combinedwith centrifugation. Effects of pH value and dispersant amount on the grade of purified diatomitewere studied and the optimumexperimental conditions were obtained. The characterizations of original diatomite and derived products after purification were determined by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and specific surface area analyzer (BET). The results indicated that the pore size distribution, impurity content and bulk density of purified diatomite were improved significantly. The dispersive effect of pH and SHMP on the separation of diatomite from clay minerals was discussed systematically through zeta potential test. Additionally, a possible purification mechanism was proposed in the light of the obtained experimental results.
Resumo:
The ways we assume, observe and model “presence” and its effects are the focus in this paper. Entities with selectively shared presences are the basis of any collective, and of attributions (such as “humorous”, “efficient” or “intelligent”). The subtleties of any joint presence can markedly influence potentials, perceptions and performance of the collective as demonstrated when a humorous tale is counterpoised with disciplined thought. Disciplines build on presences assumed known or knowable while fluid and interpretable presences pervade humor. Explorations in this paper allow considerations of collectives, causality and the philosophy of computing. Economics has long considered issues of collective action in ways circumscribed by assumptions about the presence of economic entities. Such entities are deemed rational but they are clearly not intelligent. To reach its potential, collective intelligence research needs more adequate considerations of alternate presences and their impacts.
Resumo:
Objectives The intent of this paper is in the examination of health IT implementation processes – the barriers to and facilitators of successful implementation, identification of a beginning set of implementation best practices, the identification of gaps in the health IT implementation body of knowledge, and recommendations for future study and application. Methods A literature review resulted in the identification of six health IT related implementation best practices which were subsequently debated and clarified by participants attending the NI2012 Research Post Conference held in Montreal in the summer of 2012. Using the framework for implementation research (CFIR) to guide their application, the six best practices were applied to two distinct health IT implementation studies to assess their applicability. Results Assessing the implementation processes from two markedly diverse settings illustrated both the challenges and potentials of using standardized implementation processes. In support of what was discovered in the review of the literature, “one size fits all” in health IT implementation is a fallacy, particularly when global diversity is added into the mix. At the same time, several frameworks show promise for use as “scaffolding” to begin to assess best practices, their distinct dimensions, and their applicability for use. Conclusions Health IT innovations, regardless of the implementation setting, requires a close assessment of many dimensions. While there is no “one size fits all”, there are commonalities and best practices that can be blended, adapted, and utilized to improve the process of implementation. This paper examines health IT implementation processes and identifies a beginning set of implementation best practices, which could begin to address gaps in the health IT implementation body of knowledge.