236 resultados para Vibrations ambiantes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some minerals are formed which show poorly defined X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of the oxyanions in such minerals. Among this group of minerals is mallestigite with formula Pb3Sb5+(SO4)(AsO4)(OH)6•3H2O. The objective of this research is to determine the molecular structure of the mineral mallestigite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43- , SO42- and water stretching vibrations. Mallestigite is a mineral formed in ancient waste dumps such as occurs at Mallestiger, Carinthia, Austria and as such is a mineral of archaeological significance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many phosphate containing minerals are found in the Jenolan Caves. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the mineral taranakite (K,NH4)Al3(PO4)3(OH)•9(H2O) which has been identified by X-ray diffraction. Jenolan Caves taranakite has been characterised by Raman spectroscopy. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of taranakite in the caves has been proven.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of new materials for water purification is of universal importance. Among these types of materials are layered double hydroxides (LDHs). Non-ionic materials pose a significant problem as pollutants. The interaction of methyl orange (MO) and acidic scarlet GR (GR) adsorption on hydrocalumite (Ca/Al-LDH-Cl) were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), scanning electron microscope (SEM) and near-infrared spectroscopy (NIR). The XRD results revealed that the basal spacing of Ca/Al-LDH-MO was expanded to 2.45 nm, and the MO molecules were intercalated with a inter-penetrating bilayer model in the gallery of LDH, with 49o tilting angle. Yet Ca/Al-LDH-GR was kept the same d-value as Ca/Al-LDH-Cl. The NIR spectrum for Ca/Al-LDH-MO showed a prominent band around 5994 cm-1, assigned to the combination result of the N-H stretching vibrations, which was considered as a mark to assess MO- ion intercalation into Ca/Al-LDH-Cl interlayers. From SEM images, the particle morphology of Ca/Al-LDH-MO mainly changed to irregular platelets, with a “honey-comb” like structure. Yet the Ca/Al-LDH-GR maintained regular hexagons platelets, which was similar to that of Ca/Al-LDH-Cl. All results indicated that MO- ion was intercalated into Ca/Al-LDH-Cl interlayers, and acidic scarlet GR was only adsorped upon Ca/Al-LDH-Cl surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to mimic the chemical reactions in cave systems, the analogue of the mineral stercorite H(NH4)Na(PO4)•4H2O has been synthesised. X-ray diffraction of the stercorite analogue matches the stercorite reference pattern. A comparison is made with the vibrational spectra of synthetic stercorite analogue and the natural Cave mineral. The mineral in nature is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm-1 (Cave) and 922 cm-1 (synthesised) defines the presence of hydrogen phosphate in the mineral. In the synthetic stercorite analogue, additional bands are observed and are attributed to the dihydrogen and phosphate anions. The vibrational spectra of synthetic stercorite only partly match that of the natural stercorite. It is suggested that natural stercorite is more pure than that of synthesised stercorite. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm-1. Raman spectroscopy shows the stercorite mineral is based upon the hydrogen phosphate anion and not the phosphate anion. Raman and infrared bands are found and assigned to PO43-, H2O, OH and NH stretching vibrations. Raman spectroscopy shows the synthetic analogue is similar to the natural mineral. A mechanism for the formation of stercorite is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research is to determine the molecular structure of the mineral hidalgoite PbAl3(AsO4)(SO4)(OH)6 using vibrational spectroscopy. The mineral is found in old mine sites. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations of hydrogen bonded (OH)- ions and Al3+-(O,OH) units. The approximate range of O-H...O hydrogen bond lengths is inferred from the Raman and infrared spectra. Values of 2.6989 Å, 2.7682 Å, 2.8659 Å were obtained. The formation of hidalgoite may offer a mechanism for the removal of arsenic from the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is pitticite simply described as Fe, AsO4, SO4, H2O. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the , and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 983 cm−1 assigned to the symmetric stretching mode. A strong Raman band at 1041 cm−1 is observed and is assigned to the antisymmetric stretching mode. Low intensity Raman bands at 757 and 808 cm−1 may be assigned to the antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm−1 are attributable to the doubly degenerate ν2(SO4)2- bending mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral decrespignyite (Y,REE)4Cu(CO3)4Cl(OH)5•2(H2O) and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of decrespignyite displays three bands are at 1056, 1070 and 1088 cm-1 attributed to the CO32- symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of CO32- symmetric stretching vibration varies with mineral composition. Raman bands of decrespignyite show bands at 1391, 1414, 1489 and 1547 cm-1. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm-1 assigned to the ν3 (CO3)2- antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands are observed at 791, 815, 837 and 849 cm-1and assigned to the (CO3)2- ν2 bending modes. Raman bands are observed for decrespignyite at 694, 718 and 746 cm-1 and are assigned to the (CO3)2- ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm-1 for bastnasite, 736 and 684 cm-1 for parisite, 714 cm-1 for northupite. Multiple bands are observed in the OH stretching region for decrespignyite, bastnasite and parisite indicating the presence of water and OH units in the mineral structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the accumulation of arsenate. The formation of the tsumcorite minerals is an example of a series of minerals which accumulate arsenate. There are about twelve examples in this mineral group. Raman spectroscopy offers a method for the analysis of these minerals. The structure of selected tsumcorite minerals with arsenate and sulphate anions were analysed by Raman spectroscopy. Isomorphic substitution of sulphate for arsenate is observed for gartrellite and thometzekite. A comparison is made with the sulphate bearing mineral natrochalcite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO43- anion. Characteristic Raman spectra of the minerals enable the assignment of the bands to specific vibrational modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shattuckite Cu5(SiO3)4(OH)2 is a copper hydroxy silicate and is commonly known as a ‘healing’ mineral. Three shattuckite mineral samples from three different origins were analysed by Raman spectroscopy. Some Raman bands are common in the spectra of the minerals. Raman bands at around 890, 1058 and 1102 are described as the ν3 –SiO3 antisymmetric stretching vibrations. The Raman band at 670 cm-1 is assigned to the ν4 bending modes of the -SiO3 units and the band at around 785 cm-1is due to Si-O-Si chain stretching mode. Raman (and infrared) spectroscopy proves that water is in the molecular structure of shattuckite; thus the formula is better written as Cu5(SiO3)4(OH)2•xH2O.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The single crystal Raman spectra of natural mineral paulmooreite Pb2As2O5 from the Långban locality, Filipstad district, Värmland province, Sweden are presented for the first time. It is a monoclinic mineral containing an isolated [As2O5]4-. Depolarised and single crystal spectra of the natural and synthetic sample compare favorably and are characterized by strong bands around 186 and 140 cm-1 and three medium bands at 800 – 700 cm-1. Band assignments were made based on band symmetry and spectral comparison between experimental band positions and those resulting from Hartree-Fock calculation of an isolated [As2O5]4- ion. Spectral comparison was also made with lead arsenites such as synthetic PbAs2O4 and Pb2(AsO2)3Cl and natural finnemanite in order to determine the contribution of the terminal and bridging O in paulmooreite. Bands at 760 – 733 cm-1 were assigned to terminal As-O vibrations, whereas stretches of the bridging O occur at 562 and 503 cm-1. The single crystal spectra showed good mode separation, allowing bands to be assigned a symmetry species of Ag or Bg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinoite Ca2Cu2Si3O10(OH)4 is a mineral named after a Jesuit missionary. Raman and infrared spectroscopy have been used to characterise the structure of the mineral. The Raman spectrum is characterised by an intense sharp band at 847 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Intense sharp bands at 951, 994 and 1000 cm-1 are assigned to the ν3 (Eu, A2u, B1g) SiO4 antisymmetric stretching vibrations. Multiple ν2 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple CaO and CuO stretching bands are observed. Raman spectroscopy confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the kinoite structure. Based upon the infrared spectra, it is proposed that water is also involved in the kinoite structure. Based upon vibrational spectroscopy, the formula of kinoite is defined as Ca2Cu2Si3O10(OH)4•xH2O.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A broad range of positions is articulated in the academic literature around the relationship between recordings and live performance. Auslander (2008) argues that “live performance ceased long ago to be the primary experience of popular music, with the result that most live performances of popular music now seek to replicate the music on the recording”. Elliott (1995) suggests that “hit songs are often conceived and produced as unambiguous and meticulously recorded performances that their originators often duplicate exactly in live performances”. Wurtzler (1992) argues that “as socially and historically produced, the categories of the live and the recorded are defined in a mutually exclusive relationship, in that the notion of the live is premised on the absence of recording and the defining fact of the recorded is the absence of the live”. Yet many artists perform in ways that fundamentally challenge such positions. Whilst it is common practice for musicians across many musical genres to compose and construct their musical works in the studio such that the recording is, in Auslander’s words, the ‘original performance’, the live version is not simply an attempt to replicate the recorded version. Indeed in some cases, such replication is impossible. There are well known historical examples. Queen, for example, never performed the a cappella sections of Bohemian Rhapsody because it they were too complex to perform live. A 1966 recording of the Beach Boys studio creation Good Vibrations shows them struggling through the song prior to its release. This paper argues that as technology develops, the lines between the recording studio and live performance change and become more blurred. New models for performance emerge. In a 2010 live performance given by Grammy Award winning artist Imogen Heap in New York, the artist undertakes a live, improvised construction of a piece as a performative act. She invites the audience to choose the key for the track and proceeds to layer up the various parts in front of the audience as a live performance act. Her recording process is thus revealed on stage in real time and she performs a process that what would have once been confined to the recording studio. So how do artists bring studio production processes into the live context? What aspects of studio production are now performable and what consistent models can be identified amongst the various approaches now seen? This paper will present an overview of approaches to performative realisations of studio produced tracks and will illuminate some emerging relationships between recorded music and performance across a range of contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d8 and d9) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to mimic the formation of archerite in cave minerals, the mineral analogue has been synthesised. The cave mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. X-ray diffraction proves that the synthesised archerite analogue was pure. The vibrational spectra of the synthesised mineral are compared with that of the natural cave mineral. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching and bending vibrations. The Raman band at 917 cm-1 is assigned to the HOP stretching vibration of the H2PO4- units. Bands in the 1200 to 1800 cm-1 region are associated with NH4+ bending modes. Vibrational spectroscopy enables the molecular structure of archerite to be analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phosphate mineral brazilianite NaAl3(PO4)2(OH)4 is a semi precious jewel. There are almost no minerals apart from brazilianite which are used in jewellery. Vibrational spectroscopy was used to characterize the mol. structure of brazilianite. Brazilianite is composed of chains of edge-sharing Al-O octahedra linked by P-O tetrahedra, with Na located in cavities of the framework. An intense sharp Raman band at 1019 cm-1 is attributed to the PO43- sym. stretching mode. Raman bands at 973 and 988 cm-1 are assigned to the stretching vibrations of the HOPO33- units. The IR spectra compliment the Raman spectra but show greater complexity. Multiple Raman bands are obsd. in the PO43- and HOPO33- bending region. This observation implies that both phosphate and hydrogen phosphate units are involved in the structure. Raman OH stretching vibrations are found at 3249, 3417 and 3472 cm-1. These peaks show that the OH units are not equiv. in the brazilianite structure. Vibrational spectroscopy is useful for increasing the knowledge of the mol. structure of brazilianite.