185 resultados para User-centered system design
Resumo:
Most departmental computing infrastructure reflects the state of networking technology and available funds at the time of construction, which converge in a preconceived notion of homogeneity of network architecture and usage patterns. The DMAN (Digital Media Access Network) project, a large-scale server and network foundation for the Hong Kong Polytechnic University's School of Design was created as a platform that would support a highly complex academic environment while giving maximum freedom to students, faculty and researchers through simplicity and ease of use. As a centralized multi-user computation backbone, DMAN faces an extremely hetrogeneous user and application profile, exceeding implementation and maintenance challenges of typical enterprise, and even most academic server set-ups. This paper sumarizes the specification, implementation and application of the system while describing its significance for design education in a computational context.
Resumo:
Previous work by Professor John Frazer on Evolutionary Architecture provides a basis for the development of a system evolving architectural envelopes in a generic and abstract manner. Recent research by the authors has focused on the implementation of a virtual environment for the automatic generation and exploration of complex forms and architectural envelopes based on solid modelling techniques and the integration of evolutionary algorithms, enhanced computational and mathematical models. Abstract data types are introduced for genotypes in a genetic algorithm order to develop complex models using generative and evolutionary computing techniques. Multi-objective optimisation techniques are employed for defining the fitness function in the evaluation process.
Resumo:
As an understanding of users' tacit knowledge and latent needs embedded in user experience has played a critical role in product development, users’ direct involvement in design has become a necessary part of the design process. Various ways of accessing users' tacit knowledge and latent needs have been explored in the field of user-centred design, participatory design, and design for experiencing. User-designer collaboration has been used unconsciously by traditional designers to facilitate the transfer of users' tacit knowledge and to elicit new knowledge. However, what makes user-designer collaboration an effective strategy has rarely been reported on or explored. Therefore, interaction patterns between the users and the designers in three industry-supported user involvement cases were studied. In order to develop a coding system, collaboration was defined as a set of coordinated and joint problem solving activities, measured by the elicitation of new knowledge from collaboration. The analysis of interaction patterns in the user involvement cases revealed that allowing users to challenge or modify their contextual experiences facilitates the transfer of knowledge and new knowledge generation. It was concluded that users can be more effectively integrated into the product development process by employing collaboration strategies to intensify the depth of user involvement.
Resumo:
This paper documents the empowering process of a group of public housing residents through different design probing exercises. These exercises worked along with existing social processes without any involvement of designers. This paper shows how a design researcher devised a series of probing tools called "empowerment games" with a group of active users. These games are self-learning tools for making the abstract language of design legible to users. The main purpose of this intitiative was to change the preconception of govenmental bodies and professional designers of the passivity of the users with regard to their designed environment. This was the first case of the application of a participatory design process in Hong Kong subsidized housing. Design empathy is a central skill when working with users throughout the whole design research project.
Resumo:
This report presents the demonstration of software agents prototype system for improving maintenance management [AIMM] including: • Developing and implementing a user focused approach for mining the maintenance data of buildings. This report presents the demonstration of software agents prototype system for improving maintenance management [AIMM] including: • Developing and implementing a user focused approach for mining the maintenance data of buildings. • Refining the development of a multi agent system for data mining in virtual environments (Active Worlds) by developing and implementing a filtering agent on the results obtained from applying data mining techniques on the maintenance data. • Integrating the filtering agent within the multi agents system in an interactive networked multi-user 3D virtual environment. • Populating maintenance data and discovering new rules of knowledge.
Resumo:
Objectives The objectives of this project were two-fold: • Assess the ease with which current architectural CAD systems supported the use ofparametric descriptions in defining building shape, engineering system performance and cost at the early stages of building design; • Assess the feasibility of implementing a software decision support system that allowed designers to trade-off the characteristics and configuration of various engineering systems to move towards a “global optimum” rather than considering each system in isolation and expecting humans to weigh up all of the costs and benefits. The first stage of the project consisted of using four different CAD systems to define building shells (envelopes) with different usages. These models were then exported into a shared database using the IFC information exchange specifications. The second stage involved the implementation of small computer programs that were able to estimate relevant system parameters based on performance requirements and the constraints imposed by the other systems. These are presented in a unified user interface that extracts the appropriate building shape parameters from the shared database Note that the term parametric in this context refers to the relationships among and between all elements of the building model - not just geometric associations - which will enable the desired coordination.
Resumo:
Real-World Data Mining Applications generally do not end up with the creation of the models. The use of the model is the final purpose especially in prediction tasks. The problem arises when the model is built based on much more information than that the user can provide in using the model. As a result, the performance of model reduces drastically due to many missing attributes values. This paper develops a new learning system framework, called as User Query Based Learning System (UQBLS), for building data mining models best suitable for users use. We demonstrate its deployment in a real-world application of the lifetime prediction of metallic components in buildings
Resumo:
This paper deals with the problem of using the data mining models in a real-world situation where the user can not provide all the inputs with which the predictive model is built. A learning system framework, Query Based Learning System (QBLS), is developed for improving the performance of the predictive models in practice where not all inputs are available for querying to the system. The automatic feature selection algorithm called Query Based Feature Selection (QBFS) is developed for selecting features to obtain a balance between the relative minimum subset of features and the relative maximum classification accuracy. Performance of the QBLS system and the QBFS algorithm is successfully demonstrated with a real-world application
Resumo:
The early stages of the building design process are when the most far reaching decisions are made regarding the configuration of the proposed project. This paper examines methods of providing decision support to building designers across multiple disciplines during the early stage of design. The level of detail supported is at the massing study stage where the basic envelope of the project is being defined. The block outlines on the building envelope are sliced into floors. Within a floor the only spatial divisions supported are the “user” space and the building core. The building core includes vertical transportation systems, emergency egress and vertical duct runs. The current focus of the project described in the paper is multi-storey mixed use office/residential buildings with car parking. This is a common type of building in redevelopment projects within and adjacent to the central business districts of major Australian cities. The key design parameters for system selection across the major systems in multi-storey building projects - architectural, structural, HVAC, vertical transportation, electrical distribution, fire protection, hydraulics and cost – are examined. These have been identified through literature research and discussions with building designers from various disciplines. This information is being encoded in decision support tools. The decision support tools communicate through a shared database to ensure that the relevant information is shared across all of the disciplines. An internal data model has been developed to support the very early design phase and the high level system descriptions required. A mapping to IFC 2x2 has also been defined to ensure that this early information is available at later stages of the design process.