261 resultados para Transport maritime
Resumo:
Navigational collisions are one of the major safety concerns for many seaports. Despite the extent of work recently done on collision risk analysis in port waters, little is known about the influencing factors of the risk. This paper develops a technique for modeling collision risks in port waterways in order to examine the associations between the risks and the geometric, traffic, and regulatory control characteristics of waterways. A binomial logistic model, which accounts for the correlations in the risks of a particular fairway at different time periods, is derived from traffic conflicts and calibrated for the Singapore port fairways. Estimation results show that the fairways attached to shoreline, traffic intersection and international fairway attribute higher risks, whereas those attached to confined water and local fairway possess lower risks. Higher risks are also found in the fairways featuring higher degree of bend, lower depth of water, higher numbers of cardinal and isolated danger marks, higher density of moving ships and lower operating speed. The risks are also found to be higher for night-time conditions.
Resumo:
Navigational collisions are one of the major safety concerns in many seaports. Despite the extent of recent works done on port navigational safety research, little is known about harbor pilot’s perception of collision risks in port fairways. This paper uses a hierarchical ordered probit model to investigate associations between perceived risks and the geometric and traffic characteristics of fairways and the pilot attributes. Perceived risk data, collected through a risk perception survey conducted among the Singapore port pilots, are used to calibrate the model. Intra-class correlation coefficient justifies use of the hierarchical model in comparison with an ordinary model. Results show higher perceived risks in fairways attached to anchorages, and in those featuring sharper bends and higher traffic operating speeds. Lesser risks are perceived in fairways attached to shoreline and confined waters, and in those with one-way traffic, traffic separation scheme, cardinal marks and isolated danger marks. Risk is also found to be perceived higher in night.
Resumo:
Achieving sustainability is one of the major goals of many urban transportation systems. Over the years, many innovative policies have been attempted to achieve an efficient, safe, and sustainable transport system. Those policies often require smart technologies to assist implementation process and enhance effectiveness. This paper discusses how sustainability can be promoted by embedding smart technologies in a modern transportation system. In particular, this paper studies the transport system of Singapore to address how this system is addressing sustainability through the use of smart technologies. Various technological initiatives in managing traffic flow, monitoring and enforcement, sharing real-time information, and managing revenues are discussed in light of their potentiality in addressing sustainability issues. The Singapore experience provides a useful reference for the cities intending to develop and promote a sustainable transport system.
Resumo:
Despite of a significant contribution of transport sector in the global economy and society, it is one of the largest sources of global energy consumption, green house gas emissions and environmental pollutions. A complete look onto the whole life cycle environmental inventory of this sector will be helpful to generate a holistic understanding of contributory factors causing emissions. Previous studies were mainly based on segmental views which mostly compare environmental impacts of different modes of transport, but very few consider impacts other than the operational phase. Ignoring the impacts of non-operational phases, e.g., manufacture, construction, maintenance, may not accurately reflect total contributions on emissions. Moreover an integrated study for all motorized modes of road transport is also needed to achieve a holistic estimation. The objective of this study is to develop a component based life cycle inventory model which considers impacts of both operational and non-operational phases of the whole life as well as different transport modes. In particular, the whole life cycle of road transport has been segmented into vehicle, infrastructure, fuel and operational components and inventories have been conducted on each component. The inventory model has been demonstrated using the road transport of Singapore. Results show that total life cycle green house gas emissions from the road transport sector of Singapore is 7.8 million tons per year, among which operational phase and non-operational phases contribute about 55% and about 45%, respectively. Total amount of criteria air pollutants are 46, 8.5, 33.6, 13.6 and 2.6 thousand tons per year for CO, SO2, NOx, VOC and PM10, respectively. From the findings, it can be deduced that stringent government policies on emission control measures have a significant impact on reducing environmental pollutions. In combating global warming and environmental pollutions the promotion of public transport over private modes is an effective sustainable policy.
Resumo:
Changing sodium intake from 70-200 mmol/day elevates blood pressure in normotensive volunteers by 6/4 mmHg. Older people, people with reduced renal function on a low sodium diet and people with a family history of hypertension are more likely to show this effect. The rise in blood pressure was associated with a fall in plasma volume suggesting that plasma volume changes do not initiate hypertension. In normotensive individuals the most common abnormality in membrane sodium transport induced by an extra sodium load was an increased permeability of the red cell to sodium. Some normotensive individuals also had an increase in the level of a plasma inhibitor that inhibited Na-K ATPase. These individuals also appeared to have a rise in blood pressure. Sodium intake and blood pressure are related. The relationship differs in different people and is probably controlled by the genetically inherited capacity of systems involved in membrane sodium transport.
Resumo:
With increasing rate of shipping traffic, the risk of collisions in busy and congested port waters is expected to rise. However, due to low collision frequencies it is difficult to analyze such risk in a sound statistical manner. This study aims at examining the occurrence of traffic conflicts in order to understand the characteristics of vessels involved in navigational hazards. A binomial logit model was employed to evaluate the association of vessel attributes and the kinematic conditions with conflict severity levels. Results show a positive association for vessels of small gross tonnage, overall vessel length, vessel height and draft with conflict risk. Conflicts involving a pair of dynamic vessels sailing at low speeds also have similar effects.
Resumo:
The traffic conflict technique (TCT) is a powerful technique applied in road traffic safety assessment as a surrogate of the traditional accident data analysis. It has subdued the conceptual and implemental weaknesses of the accident statistics. Although this technique has been applied effectively in road traffic, it has not been practised well in marine traffic even though this traffic system has some distinct advantages in terms of having a monitoring system. This monitoring system can provide navigational information as well as other geometric information of the ships for a larger study area over a longer time period. However, for implementing the TCT in the marine traffic system, it should be examined critically to suit the complex nature of the traffic system. This paper examines the suitability of the TCT to be applied to marine traffic and proposes a framework for a follow up comprehensive conflict study.
Resumo:
Navigational collisions are a major safety concern in many seaports. Despite the recent advances in port navigational safety research, little is known about harbor pilot’s perception of collision risks in anchorages. This study attempts to model such risks by employing a hierarchical ordered probit model, which is calibrated by using data collected through a risk perception survey conducted on Singapore port pilots. The hierarchical model is found to be useful to account for correlations in risks perceived by individual pilots. Results show higher perceived risks in anchorages attached to intersection, local and international fairway; becoming more critical at night. Lesser risks are perceived in anchorages featuring shoreline in boundary, higher water depth, lower density of stationary ships, cardinal marks and isolated danger marks. Pilotage experience shows a negative effect on perceived risks. This study indicates that hierarchical modeling would be useful for treating correlations in navigational safety data.
Resumo:
With increasing rate of shipping traffic, the risk of collisions in busy and congested port waters is likely to rise. However, due to low collision frequencies in port waters, it is difficult to analyze such risk in a sound statistical manner. A convenient approach of investigating navigational collision risk is the application of the traffic conflict techniques, which have potential to overcome the difficulty of obtaining statistical soundness. This study aims at examining port water conflicts in order to understand the characteristics of collision risk with regard to vessels involved, conflict locations, traffic and kinematic conditions. A hierarchical binomial logit model, which considers the potential correlations between observation-units, i.e., vessels, involved in the same conflicts, is employed to evaluate the association of explanatory variables with conflict severity levels. Results show higher likelihood of serious conflicts for vessels of small gross tonnage or small overall length. The probability of serious conflict also increases at locations where vessels have more varied headings, such as traffic intersections and anchorages; becoming more critical at night time. Findings from this research should assist both navigators operating in port waters as well as port authorities overseeing navigational management.
Resumo:
Navigational collisions are one of the major safety concerns in many seaports. To address this safety concern, a comprehensive and structured method of collision risk management is necessary. Traditionally management of port water collision risks has been relied on historical collision data. However, this collision-data-based approach is hampered by several shortcomings, such as randomness and rarity of collision occurrence leading to obtaining insufficient number of samples for a sound statistical analysis, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these shortcomings is the navigational traffic conflict technique that uses traffic conflicts as an alternative to the collision data. This paper proposes a collision risk management method by utilizing the principles of this technique. This risk management method allows safety analysts to diagnose safety deficiencies in a proactive manner, which, consequently, has great potential for managing collision risks in a fast, reliable and efficient manner.
Resumo:
Due to grave potential human, environmental and economical consequences of collisions at sea, collision avoidance has become an important safety concern in navigation. To reduce the risk of collisions at sea, appropriate collision avoidance actions need to be taken in accordance with the regulations, i.e., International Regulations for Preventing Collisions at Sea. However, the regulations only provide qualitative rules and guidelines, and therefore it requires navigators to decide on collision avoidance actions quantitatively by using their judgments which often leads to making errors in navigation. To better help navigators in collision avoidance, this paper develops a comprehensive collision avoidance decision making model for providing whether a collision avoidance action is required, when to take action and what action to be taken. The model is developed based on three types of collision avoidance actions, such as course change only, speed change only, and a combination of both. The model has potential to reduce the chance of making human error in navigation by assisting navigators in decision making on collision avoidance actions.
Resumo:
Navigational collisions are one of the major safety concerns for many seaports. Continuing growth of shipping traffic in number and sizes is likely to result in increased number of traffic movements, which consequently could result higher risk of collisions in these restricted waters. This continually increasing safety concern warrants a comprehensive technique for modeling collision risk in port waters, particularly for modeling the probability of collision events and the associated consequences (i.e., injuries and fatalities). A number of techniques have been utilized for modeling the risk qualitatively, semi-quantitatively and quantitatively. These traditional techniques mostly rely on historical collision data, often in conjunction with expert judgments. However, these techniques are hampered by several shortcomings, such as randomness and rarity of collision occurrence leading to obtaining insufficient number of collision counts for a sound statistical analysis, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these shortcomings is the navigational traffic conflict technique (NTCT), which uses traffic conflicts as an alternative to the collisions for modeling the probability of collision events quantitatively. This article explores the existing techniques for modeling collision risk in port waters. In particular, it identifies the advantages and limitations of the traditional techniques and highlights the potentials of the NTCT in overcoming the limitations. In view of the principles of the NTCT, a structured method for managing collision risk is proposed. This risk management method allows safety analysts to diagnose safety deficiencies in a proactive manner, which consequently has great potential for managing collision risk in a fast, reliable and efficient manner.
Resumo:
An elevated particle number concentration (PNC) observed during nucleation events could play a significant contribution to the total particle load and therefore to the air pollution in the urban environments. Therefore, a field measurement study of PNC was commenced to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. During the morning traffic peak period, the highest relative fraction of PNC reached about 5% at QUT and WOO on weekdays. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and it the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events. © 2012 Author(s).
Resumo:
Fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBF) to discretize the space variable. By contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example is presented to describe the fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating of fractional differential equations, and it has good potential in development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.