613 resultados para Structure Prediction Servers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to develop and assess the reliability and validity of a pair of self-report questionnaires to measure self-efficacy and expectancy associated with benzodiazepine use, the Benzodiazepine Refusal Self- Efficacy Questionnaire (BRSEQ) and the Benzodiazepine Expectancy Questionnaire (BEQ). Internal structure of the questionnaireswas established by principal component analysis (PCA) in a sample of 155 respondents, and verified by confirmatory factor analyses (CFA) in a second independent sample (n=139) using structural equation modeling. The PCA of the BRSEQ resulted in a 16-item, 4-factor scale, and the BEQ formed an 18-item, 2-factor scale. Both scales were internally reliable. CFA confirmed these internal structures and reduced the questionnaires to a 14-item self-efficacy scale and a 12-item expectancy scale. Lower self-efficacy and higher expectancy were moderately associated with higher scores on the SDS-B. The scales provide reliable measures for assessing benzodiazepine self-efficacy and expectancies. Future research will examine the utility of the scales in prospective prediction of benzodiazepine cessation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological responses to environmental stress are increasingly well studied in scleractinian corals. This work reports a new stress-related skeletal structure we term clypeotheca. Clypeotheca was observed in several livecollected common reef-building coral genera and a two to three kya subfossil specimen from Heron Reef, Great Barrier Reef and consists of an epitheca-like skeletal wall that seals over the surface of parts of the corallum in areas of stress or damage. It appears to form from a coordinated process wherein neighboring polyps and adjoining coenosarc seal themselves off from the surrounding environment as they contract and die. Clypeotheca forms from inward skeletal centripetal growth at the edges of corallites and by the merging of flange-like outgrowths that surround individual spines over the surface of the coenosteum. Microstructurally, the merged flanges are similar to upsidedown dissepiments and true epitheca. Clypeotheca is interpreted primarily as a response to stress that may help protect the colony from invasion of unhealthy tissues by parasites or disease by retracting tissues in areas that have become unhealthy for the polyps. Identification of skeletal responses of corals to environmental stress may enable the frequency of certain types of environmental stress to be documented in past environments. Such data may be important for understanding the nature of reef dynamics through intervals of climate change and for monitoring the effects of possible anthropogenic stress in modern coral reef habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Appropriate mathematical models that are capable of estimating times to failures and the probability of failures in the future are essential in EAM. In most real-life situations, the lifetime of an engineering asset is influenced and/or indicated by different factors that are termed as covariates. Hazard prediction with covariates is an elemental notion in the reliability theory to estimate the tendency of an engineering asset failing instantaneously beyond the current time assumed that it has already survived up to the current time. A number of statistical covariate-based hazard models have been developed. However, none of them has explicitly incorporated both external and internal covariates into one model. This paper introduces a novel covariate-based hazard model to address this concern. This model is named as Explicit Hazard Model (EHM). Both the semi-parametric and non-parametric forms of this model are presented in the paper. The major purpose of this paper is to illustrate the theoretical development of EHM. Due to page limitation, a case study with the reliability field data is presented in the applications part of this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to predict adherence to diabetic treatment regimens and sustained diabetic control. During two clinic visits that were 2 months apart, 63 adult outpatients completed measures of diabetic history, current treatment, diabetic control, adherence, and self-efficacy about adherence to treatment. Results showed that self-efficacy was a significant predictor of later adherence to diabetes treatment even after past levels of adherence were taken into account. Posttest levels of adherence in turn were significantly associated with posttest %HbA1c after control for illness severity. A stepwise multiple regression to predict %HbAlc at post entered pretest measures of diabetic control, treatment type, and self-efficacy, which together predicted 50% of the variance. Results are related to self-efficacy theory and implications for practice are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hazard and reliability prediction of an engineering asset is one of the significant fields of research in Engineering Asset Health Management (EAHM). In real-life situations where an engineering asset operates under dynamic operational and environmental conditions, the lifetime of an engineering asset can be influenced and/or indicated by different factors that are termed as covariates. The Explicit Hazard Model (EHM) as a covariate-based hazard model is a new approach for hazard prediction which explicitly incorporates both internal and external covariates into one model. EHM is an appropriate model to use in the analysis of lifetime data in presence of both internal and external covariates in the reliability field. This paper presents applications of the methodology which is introduced and illustrated in the theory part of this study. In this paper, the semi-parametric EHM is applied to a case study so as to predict the hazard and reliability of resistance elements on a Resistance Corrosion Sensor Board (RCSB).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Event-specific scales commonly have greater power than generalized scales in prediction of specific disorders and in testing mediator models for predicting such disorders. Therefore, in a preliminary study, a 6-item Alcohol Helplessness Scale was constructed and found to be reliable for a sample of 98 problem drinkers. Hierarchical multiple regression and its derivative path analysis were used to test whether helplessness and self-efficacy moderate or mediate the link between alcohol dependence and depression, A test of a moderation model was not supported, whereas a test of a mediation model was supported. Helplessness and self-efficacy both significantly and independently mediated between alcohol dependence and depression. Nevertheless, a significant direct effect of alcohol dependence on depression also remained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the utility of self-efficacy as a predictor of social activity and mood control in multiple sclerosis (MS). Seventy-one subjects with MS were recruited from people attending an MS centre or from a mailing list and were examined on two occasions that were two months apart. Clinic patients were more disabled than patients who completed assessments by post, but they were of higher socioeconomic status and were less dysphoric. We attempted to predict self-reported performance of mood control and social activity at two months, from self-efficacy or performance on these tasks at pretest. Demographic variables, disorder status, disability, self-esteem and depression were also allowed to compete for entry into multiple regressions. Substantial stability in mood, performance and disability was observed over the two months. In both mood control and social activity, past performance was the strongest predictor of later performance, but self-efficacy also contributed significantly to the prediction. The disability level entered a prediction of socila activity, but no other variables predicted either type of performance. A secondary analysis predicting self-esteem at two months also included self-efficacy for social activity, illustrating the contribution of perceived capability to later assessments of self-worth. The study provided support for self-efficacy as a predictor of later behavioural outcomes and self-esteem in multiple sclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebrplasty involved injecting cement into a fractured vertebra to provide stabilisation. There is clinical evidence to suggest however that vertebroplasty may be assocated with a higher risk of adjacent vertebral fracture; which may be due to the change in material properties of the post-procedure vertebra modifying the transmission of mechanical stresses to adjacent vertebrae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tested a social–cognitive model of depressive episodes and their treatment within a predictive study of treatment response. 42 clinically depressed volunteers (aged 22–60 yrs) were given self-efficacy (SE) questionnaires and other measures before and after treatment with cognitive therapy. Results support the idea that SE and skills regarding control of negative cognition mediates a sustained response to cognitive treatment for depression. Not only did mood-control variables correlate highly with concurrent changes in depression scores during treatment, but the posttreatment SE measure discriminated Ss who relapsed over the next 12 mo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Ecological data sets often use clustered measurements or use repeated sampling in a longitudinal design. Choosing the correct covariance structure is an important step in the analysis of such data, as the covariance describes the degree of similarity among the repeated observations. 2. Three methods for choosing the covariance are: the Akaike information criterion (AIC), the quasi-information criterion (QIC), and the deviance information criterion (DIC). We compared the methods using a simulation study and using a data set that explored effects of forest fragmentation on avian species richness over 15 years. 3. The overall success was 80.6% for the AIC, 29.4% for the QIC and 81.6% for the DIC. For the forest fragmentation study the AIC and DIC selected the unstructured covariance, whereas the QIC selected the simpler autoregressive covariance. Graphical diagnostics suggested that the unstructured covariance was probably correct. 4. We recommend using DIC for selecting the correct covariance structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XML document clustering is essential for many document handling applications such as information storage, retrieval, integration and transformation. An XML clustering algorithm should process both the structural and the content information of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. This paper introduces a novel approach that first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. The proposed method reduces the high dimensionality of input data by using only the structure-constrained content. The empirical analysis reveals that the proposed method can effectively cluster even very large XML datasets and outperform other existing methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergent field of practice-led research is a unique research paradigm that situates creative practice as both a driver and outcome of the research process. The exegesis that accompanies the creative practice in higher research degrees remains open to experimentation and discussion around what content should be included, how it should be structured, and its orientations. This paper contributes to this discussion by reporting on a content analysis of a large, local sample of exegeses. We have observed a broad pattern in contents and structure within this sample. Besides the introduction and conclusion, it has three main parts: situating concepts (conceptual definitions and theories), practical contexts (precedents in related practices), and new creations (the creative process, the artifacts produced and their value as research). This model appears to combine earlier approaches to the exegesis, which oscillated between academic objectivity in providing a context for the practice and personal reflection or commentary upon the creative practice. We argue that this hybrid or connective model assumes both orientations and so allows the researcher to effectively frame the practice as a research contribution to a wider field while doing justice to its invested poetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective We aimed to predict sub-national spatial variation in numbers of people infected with Schistosoma haematobium, and associated uncertainties, in Burkina Faso, Mali and Niger, prior to implementation of national control programmes. Methods We used national field survey datasets covering a contiguous area 2,750 × 850 km, from 26,790 school-aged children (5–14 years) in 418 schools. Bayesian geostatistical models were used to predict prevalence of high and low intensity infections and associated 95% credible intervals (CrI). Numbers infected were determined by multiplying predicted prevalence by numbers of school-aged children in 1 km2 pixels covering the study area. Findings Numbers of school-aged children with low-intensity infections were: 433,268 in Burkina Faso, 872,328 in Mali and 580,286 in Niger. Numbers with high-intensity infections were: 416,009 in Burkina Faso, 511,845 in Mali and 254,150 in Niger. 95% CrIs (indicative of uncertainty) were wide; e.g. the mean number of boys aged 10–14 years infected in Mali was 140,200 (95% CrI 6200, 512,100). Conclusion National aggregate estimates for numbers infected mask important local variation, e.g. most S. haematobium infections in Niger occur in the Niger River valley. Prevalence of high-intensity infections was strongly clustered in foci in western and central Mali, north-eastern and northwestern Burkina Faso and the Niger River valley in Niger. Populations in these foci are likely to carry the bulk of the urinary schistosomiasis burden and should receive priority for schistosomiasis control. Uncertainties in predicted prevalence and numbers infected should be acknowledged and taken into consideration by control programme planners.