188 resultados para Spherical parameterization
Resumo:
In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0◦ to 90◦. The corresponding diffusion ellipsoids are prolate for θ < θMA, spherical for θ ≈ θMA, and oblate for θ > θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.
Resumo:
Purpose: The purpose of this study was to calculate mechanical properties of tough skinned vegetables as a part of Finite Element Modelling (FEM) and simulation of tissue damage during mechanical peeling of tough skinned vegetables. Design/methodology: There are some previous studies on mechanical properties of fruits and vegetables however, behaviour of tissue under different processing operations will be different. In this study indentation test was performed on Peel, Flesh and Unpeeled samples of pumpkin as a tough skinned vegetable. Additionally, the test performed in three different loading rates for peel: 1.25, 10, 20 mm/min and 20 mm/min for flesh and unpeeled samples respectively. The spherical end indenter with 8mm diameter used for the experimental tests. Samples prepare from defect free and ripped pumpkin purchased from local shops in Brisbane, Australia. Humidity and temperature were 20-55% and 20-250C respectively. Findings: Consequently, force deformation and stress and strain of samples were calculated and shown in presented figures. Relative contribution (%) of skin to different mechanical properties is computed and compared with data available from literature. According the results, peel samples had the highest value of rupture force (291N) and as well as highest value of firmness (1411Nm-1). Research limitations/implications: The proposed study focused on one type of tough skinned vegetables and one variety of pumpkin however, more tests will give better understandings of behaviours of tissue. Additionally, the behaviours of peel, unpeeled and flesh samples in different speed of loading will provide more details of tissue damages during mechanical loading. Originality/value: Mechanical properties of pumpkin tissue calculated using the results of indentation test, specifically the behaviours of peel, flesh and unpeeled samples were explored which is a new approach in Finite Element Modelling (FEM) of food processes. Keywords: Finite Element Modelling (FEM), relative contribution, firmness, toughness and rupture force.
Resumo:
This paper presents a reactive Sense and Avoid approach using spherical image-based visual servoing. Avoidance of point targets in the lateral or vertical plane is achieved without requiring an estimate of range. Simulated results for static and dynamic targets are provided using a realistic model of a small fixed wing unmanned aircraft.
Resumo:
PURPOSE: To examine the symmetry of corneal changes following near work in the fellow eyes of non-amblyopic myopic anisometropes. METHODS: Thirty-four non-amblyopic myopic anisometropes (minimum 1 D spherical equivalent anisometropia) were recruited. Corneal topography was measured with the Medmont E300 Videokeratoscope before and after a controlled near task. Subjects were positioned to minimise head movements and read continuous text on a computer monitor for 10 minutes at an angle of 25 degrees downward gaze and an accommodation demand of 2.5 D. Measures of palpebral aperture morphology during primary and downward gaze were also obtained using digital photography and analysed with customised software. RESULTS: Significant changes in corneal topography were observed after ten minutes of reading. Localised superior regions of corneal topographical change (a hyperopic shift in corneal power) were typically exhibited in both eyes following the near task. The mean change in the corneal sphero-cylinder was +0.02/-0.11 x 113 and +0.02/-0.06 x 68 for the more and less myopic eyes respectively for a 6 mm corneal diameter. A significantly greater change in corneal astigmatism power vector J0 (a larger increase in against the rule astigmatism) was observed in the more myopic eyes (p < 0.01 for a 6 mm diameter). The more and less myopic eyes exhibited a high degree of interocular symmetry for measures of palpebral aperture morphology during both primary and downward gaze. Changes in corneal power vectors following reading were associated with eyelid position during downward gaze. CONCLUSIONS: Changes in corneal topography observed following a controlled reading task were highly symmetrical between the fellow eyes of myopic anisometropes due to the interocular symmetry of the palpebral aperture. However, the more myopic eye did exhibit a small but significantly greater magnitude of change in corneal astigmatism compared to the less myopic eye following reading. These findings may have implications for understanding the mechanism of development of non-amblyopic myopic anisometropia.
Resumo:
PURPOSE: To examine the foveal retinal thickness (RT) and subfoveal choroidal thickness (ChT) between the fellow eyes of myopic anisometropes. METHODS: Twenty-two young (mean age 23 ± 5 years), healthy myopic anisometropes (≥ 1 D spherical equivalent [SEq] anisometropia) without amblyopia or strabismus were recruited. Spectral domain optical coherence tomography (SD-OCT) was used to capture images of the retina and choroid. Customised software was used to register, align and average multiple foveal OCT B-Scan images from each subject in order to enhance image quality. Two independent masked observers then manually determined the RT and ChT at the centre of the fovea from each SD-OCT image, which were then averaged. Axial length was measured using optical low coherence biometry during relaxed accommodation. RESULTS: The mean absolute SEq anisometropia was 1.74 ± 0.95 D and the mean interocular difference in axial length was 0.58 ± 0.41 mm. There was a strong correlation between SEq anisometropia and the interocular difference in axial length (r = 0.90, p < 0.001). Measures of RT and ChT were highly correlated between the two observers (r = 0.99 and 0.97 respectively) and in close agreement (mean inter-observer difference: RT 1.3 ± 2.2 µm, ChT 1.5 ± 13.7 µm). There was no significant difference in RT between the more (218 ± 18 µm) and less myopic eyes (215 ± 18 µm) (p > 0.05). However, the mean subfoveal ChT was significantly thinner in the more myopic eye (252 ± 46 µm) compared to the fellow, less myopic eye (286 ± 58 µm) (p < 0.001). There was a moderate correlation between the interocular difference in ChT and the interocular difference in axial length (r = -0.50, p < 0.01). CONCLUSIONS: Foveal RT was similar between the fellow eyes of myopic anisometropes; however, the subfoveal choroid was significantly thinner in the more myopic (longer) eye of our anisometropic cohort. The interocular difference in ChT correlated with the magnitude of axial anisometropia.
Resumo:
Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.
Resumo:
Purpose: The prevalence of refractive errors in children has been extensively researched. Comparisons between studies can, however, be compromised because of differences between accommodation control methods and techniques used for measuring refractive error. The aim of this study was to compare spherical refractive error results obtained at baseline and using two different accommodation control methods – extended optical fogging and cycloplegia, for two measurement techniques – autorefraction and retinoscopy. Methods: Participants comprised twenty-five school children aged between 6 and 13 years (mean age: 9.52 ± 2.06 years). The refractive error of one eye was measured at baseline and again under two different accommodation control conditions: extended optical fogging (+2.00DS for 20 minutes) and cycloplegia (1% cyclopentolate). Autorefraction and retinoscopy were both used to measure most plus spherical power for each condition. Results: A significant interaction was demonstrated between measurement technique and accommodation control method (p = 0.036), with significant differences in spherical power evident between accommodation control methods for each of the measurement techniques (p < 0.005). For retinoscopy, refractive errors were significantly more positive for cycloplegia compared to optical fogging, which were in turn significantly more positive than baseline, while for autorefraction, there were significant differences between cycloplegia and extended optical fogging and between cycloplegia and baseline only. Conclusions: Determination of refractive error under cycloplegia elicits more plus than using extended optical fogging as a method to relax accommodation. These findings support the use of cycloplegic refraction compared with extended optical fogging as a means of controlling accommodation for population based refractive error studies in children.
Resumo:
A calorimetric study has shown that glasses along the albite-diopside join in the system albiteanorthite-diopside have positive enthalpies of mixing. Thermodynamic calculations based on these data describe a nearly symmetric, metastable, subliquidus irascibility gap along the join with a critical temperature at 910 K. The existence of the miscibility gap was tested experimentally by annealing an Ab50Di50 glass at 748 K and 823 K. Annealed glasses were examined by optical microscopy and by scanning and transmission electron microscopy. The glasses showed morphological and chemical features consistent with unmixing of two glass phases. The apparent mechanism of phase separation involves initial spinodal decomposition followed by coarsening to produce 0.1 μm–0.3 μm spherical glass phases.
Resumo:
Surveys were conducted in the Philippines from 1995 to 1997 to examine relationships between production environment variables (agroecosystem, synchrony of planting, and varieties planted) and the occurrence of rice tungro disease epidemics using correspondence analyses. The sites covered were Isabela, Nueva Ecija, North Cotabato, and Bohol provinces as well as Bicol region. Tungro disease incidence in farmers’ fields was assessed visually based on typical symptoms. In addition, leaf samples were collected from each field and indexed serologically by enzyme-linked immunosorbent assay for the presence of Rice tungro bacilliform (RTBV) and Rice tungro spherical (RTSV) viruses. Thus, relationships between the production environment variables and four disease variables — visual incidence and double RTBV and RTSV, single RTSV, and single RTBV infections — were examined. A higher association was observed between site and varieties planted as well as site and synchrony of planting than between site and agroecosystem or site and disease variables (visual incidence, double RTBV and RTSV and single RTSV infections). Disease variables depended on both varieties planted and synchrony of planting and correspondence analysis revealed that the low disease incidence in Nueva Ecija was associated with synchronous planting while the high disease incidence in Isabela was associated with the planting of susceptible varieties and asynchronous planting. Such findings suggest that the relationship between the last two factors at a given site is critical to predicting tungro occurrence. Moreover, correspondence analysis of the relationship among disease variables revealed that tungro incidence is associated with not only double RTBV and RTSV infections but also single RTSV infections. Implications of these results on tungro epidemiology and management are discussed.
Resumo:
Purpose: To examine the symmetry of corneal changes following near work in the fellow eyes of non-amblyopic myopic anisometropes. Methods: Thirty-four non-amblyopic, myopic anisometropes (minimum 1 D spherical equivalent anisometropia) had corneal topography measured before and after a controlled near work task. Subjects were positioned in a headrest to minimise head movements and read continuous text on a computer monitor for 10 minutes at an angle of 25 degrees downward gaze and an accommodation demand of 2.5 D. Measures of the morphology of the palpebral aperture during primary and downward gaze were also obtained. Results: The more and less myopic eyes exhibited a high degree of interocular symmetry for measures of palpebral aperture morphology during both primary and downward gaze. Following the near work task, fellow eyes also displayed a symmetrical change in superior corneal topography (hyperopic defocus) which correlated with the position of the upper eyelid during downward gaze. Greater changes in the spherical corneal power vector (M) following reading were associated with narrower palpebral aperture during downward gaze (p = 0.07 for more myopic and p = 0.03 for less myopic eyes). A significantly greater change in J0 (an increase in against the rule astigmatism) was observed in the more myopic eyes (-0.04 ± 0.04 D) compared to the less myopic eyes (-0.02 ± 0.06 D) over a 6 mm corneal diameter (p = 0.01). Conclusions: Changes in corneal topography following near work are highly symmetrical between the fellow eyes of myopic anisometropes due to the interocular symmetry of the palpebral aperture. However, the more myopic eye exhibits changes in corneal astigmatism of greater magnitude compared to the less myopic eye.
Resumo:
Purpose: To investigate the effect of age on the contributions of the anterior cornea and internal components to ocular aberrations in the peripheral visual field. Methods: Ocular aberrations were measured in 10 young emmetropes and 7 older emmetropes using a modified commercial Hartmann-Shack aberrometer across 42° x 32° of central visual field. Anterior corneal aberrations were estimated from anterior corneal topography using theoretical ray-tracing. Internal aberrations were calculated by subtracting anterior corneal aberrations from ocular aberrations. Results: Anterior corneal aberrations of young subjects were reasonably compensated by the internal aberrations, except for astigmatism for which the internal contribution was small out to the 21° field limit. The internal coma and spherical aberration of the older subjects were considerably smaller in magnitude than those of the young subjects such that the compensation for anterior corneal aberrations was poorer. This can be explained by age-related changes in the lens shape and refractive index distribution. Conclusion: oss of balance between anterior cornea and internal components of higher order aberrations with increasing age, found previously for on-axis vision, applies also to the peripheral visual field.
Resumo:
Background: The size of the carrier influences drug aerosolization from a dry powder inhaler (DPI) formulation. Lactose particles with irregular shape and rough surface in a variety of sizes are additionally used as carriers; however, contradictory reports exist regarding the effect of carrier size on the dispersion of drug. We examined the influence of the spherical particle size of the biodegradable polylactide-co-glycolide (PLGA) carrier on the aerosolization of a model drug, salbutamol sulphate (SS). Methods: Four different sizes (20-150 µm) of polymer carriers were fabricated using solvent evaporation technique and the dispersion of SS from these carriers was measured by a Twin Stage Impinger (TSI). The size and morphological properties of polymer carriers were determined by laser diffraction and SEM, respectively. Results: The FPF was found to increase from 5.6% to 21.3% with increasing carrier sizeup to150 µm. Conclusions: The aerosolization of drug increased linearly with the size of polymer carriers. For a fixed mass of drug particles in a formulation, the mass of drug particles per unit area of carriers is higher in formulations containing the larger carriers, which leads to an increase in the dispersion of drug due to the increased mechanical forces occurred between the carriers and the device walls.
Resumo:
The assembly of retroviruses such as HIV-1 is driven by oligomerization of their major structural protein, Gag. Gag is a multidomain polyprotein including three conserved folded domains: MA (matrix), CA (capsid) and NC (nucleocapsid)(1). Assembly of an infectious virion proceeds in two stages(2). In the first stage, Gag oligomerization into a hexameric protein lattice leads to the formation of an incomplete, roughly spherical protein shell that buds through the plasma membrane of the infected cell to release an enveloped immature virus particle. In the second stage, cleavage of Gag by the viral protease leads to rearrangement of the particle interior, converting the non-infectious immature virus particle into a mature infectious virion. The immature Gag shell acts as the pivotal intermediate in assembly and is a potential target for anti-retroviral drugs both in inhibiting virus assembly and in disrupting virus maturation(3). However, detailed structural information on the immature Gag shell has not previously been available. For this reason it is unclear what protein conformations and interfaces mediate the interactions between domains and therefore the assembly of retrovirus particles, and what structural transitions are associated with retrovirus maturation. Here we solve the structure of the immature retroviral Gag shell from Mason-Pfizer monkey virus by combining cryo-electron microscopy and tomography. The 8-angstrom resolution structure permits the derivation of a pseudo-atomic model of CA in the immature retrovirus, which defines the protein interfaces mediating retrovirus assembly. We show that transition of an immature retrovirus into its mature infectious form involves marked rotations and translations of CA domains, that the roles of the amino-terminal and carboxy-terminal domains of CA in assembling the immature and mature hexameric lattices are exchanged, and that the CA interactions that stabilize the immature and mature viruses are almost completely distinct.
Resumo:
Purpose: To use a large wavefront database of a clinical population to investigate relationships between refractions and higher order aberrations and between aberrations of right and left eyes. Methods: Third and fourth-order aberration coefficients and higher-order root-mean-squared aberrations (HO RMS), scaled to a pupil size of 4.5 mm diameter, were analysed in a population of about 24,000 patients from Carl Zeiss Vision's European wavefront database. Correlations were determined between the aberrations and the variables of refraction, near addition and cylinder. Results: Most aberration coefficients were significantly dependent upon these variables, but the proportions of aberrations that could be explained by these factors were less than 2% except for spherical aberration (12%), horizontal coma (9%) and HO RMS (7%). Near addition was the major contributor for horizontal coma (8.5% out of 9.5%) and spherical equivalent was the major contributor for spherical aberration (7.7% out of 11.6%). Interocular correlations were highly significant for all aberration coefficients, varying between 0.16 and 0.81. Anisometropia was a variable of significance for three aberrations (vertical coma, secondary astigmatism and tetrafoil), but little importance can be placed on this because of the small proportions of aberrations that can be explained by refraction (all less than 1.0 %). Conclusions: Most third- and fourth-order aberration coefficients were significantly dependent upon spherical equivalent, near addition and cylinder, but only horizontal coma (9%) and spherical aberration (12%) showed dependencies of greater than 2%. Interocular correlations were highly significant for all aberration coefficients, but anisometropia had little influence on aberration coefficients.
Resumo:
Purpose: To compare the retinal thickness (RT) and choroidal thickness (ChT) between the fellow eyes of non-amblyopic myopic anisometropes. Methods: The eyes of 22 non-amblyopic myopic anisometropes (1 D spherical equivalent refraction [SER] anisometropia) were examined using spectral domain optical coherence tomography (SD-OCT). Customised software was used to register, align and average multiple foveal OCT B-Scan images from each subject in order to enhance image quality. Two independent masked observers manually determined the RT and ChT from each SD-OCT image up to 2.5 mm nasal and temporal to the fovea. Axial length (AXL) was measured using optical low coherence biometry during relaxed accommodation. Results: The mean SER anisometropia was 1.74 ± 0.95 D and the mean interocular AXL difference was 0.58 ± 0.41 mm. There was no significant difference in foveal RT between the fellow eyes (P > 0.05). Mean subfoveal ChT was significantly thinner in the more myopic eye (252 ± 46 μm compared to the fellow, less myopic eye (286 ± 58 μm) (P < 0.001). There was a moderate correlation between the interocular difference in subfoveal ChT and the interocular difference in AXL (r = -0.50, P < 0.01). Asian anisometropes displayed more regionally symmetrical (nasal-temporal)interocular differences in ChT profile compared to Caucasians. Conclusions: RT was similar between the fellow eyes of myopic anisometropes; however, the subfoveal choroid was significantly thinner in the more myopic (longer) eye of this anisometropic cohort. The interocular asymmetry in ChT correlated with the interocular difference in AXL.