786 resultados para Retrieval models


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research examines how men react to male models in print advertisements. In two experiments, we show that the gender identity of men influences their responses to advertisements featuring a masculine, feminine, or androgynous male model. In addition, we explore the extent to which men feel they will be classified by others as similar to the model as a mechanism for these effects. Specifically, masculine men respond most favorably to masculine models and are negative toward feminine models. In contrast, feminine men prefer feminine models when their private self is salient. Yet in a collective context, they prefer masculine models.These experiments shed light on how gender identity and self-construal influence male evaluations and illustrate the social pressure on men to endorse traditional masculine portrayals. We also present implications for advertising practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In two experiments, we show that the beliefs women have about the controllability of their weight (i.e., weight locus of control) influences their responses to advertisements featuring a larger-sized female model or a slim female model. Further, we examine self-referencing as a mechanism for these effects. Specifically, people who believe they can control their weight (“internals”), respond most favorably to slim models in advertising, and this favorable response is mediated by self-referencing. In contrast, people who feel powerless about their weight (“externals”), self-reference larger-sized models, but only prefer larger-sized models when the advertisement is for a non-fattening product. For fattening products, they exhibit a similar preference for larger-sized models and slim models. Together, these experiments shed light on the effect of model body size and the role of weight locus of control in influencing consumer attitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A configurable process model provides a consolidated view of a family of business processes. It promotes the reuse of proven practices by providing analysts with a generic modelling artifact from which to derive individual process models. Unfortunately, the scope of existing notations for configurable process modelling is restricted, thus hindering their applicability. Specifically, these notations focus on capturing tasks and control-flow dependencies, neglecting equally important ingredients of business processes such as data and resources. This research fills this gap by proposing a configurable process modelling notation incorporating features for capturing resources, data and physical objects involved in the performance of tasks. The proposal has been implemented in a toolset that assists analysts during the configuration phase and guarantees the correctness of the resulting process models. The approach has been validated by means of a case study from the film industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advertising research has generally not gone beyond offering support for a positive effect where ethnic models in advertising are viewed by consumers of the same ethnicity. This study offers an explanation behind this phenomenon that can be useful to marketers using self-reference theory. Our experiment reveals a strong self-referencing effect for ethnic minority individuals. Specifically, Asian subjects (the ethnic minority group) self-referenced ads with Asian models more than white subjects (the ethnic majority group). However, this result was not evident for white subjects. Implications for academics and advertisers are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australia needs highly skilled workers to sustain a healthy economy. Current employment-based training models have limitations in meeting the demands for highly skilled labour supply. The research explored current and emerging models of employment-based training to propose more effective models at higher VET qualifications that can maintain a balance between institution and work-based learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cognitive modelling of phenomena in clinical practice allows the operationalisation of otherwise diffuse descriptive terms such as craving or flashbacks. This supports the empirical investigation of the clinical phenomena and the development of targeted treatment interventions. This paper focuses on the cognitive processes underpinning craving, which is recognised as a motivating experience in substance dependence. We use a high-level cognitive architecture, Interacting Cognitive Subsystems (ICS), to compare two theories of craving: Tiffany's theory, centred on the control of automated action schemata, and our own Elaborated Intrusion theory of craving. Data from a questionnaire study of the subjective aspects of everyday desires experienced by a large non-clinical population are presented. Both the data and the high-level modelling support the central claim of the Elaborated Intrusion theory that imagery is a key element of craving, providing the subjective experience and mediating much of the associated disruption of concurrent cognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the following problem: given two or more business process models, create a process model that is the union of the process models given as input. In other words, the behavior of the produced process model should encompass that of the input models. The paper describes an algorithm that produces a single configurable process model from an arbitrary collection of process models. The algorithm works by extracting the common parts of the input process models, creating a single copy of them, and appending the differences as branches of configurable connectors. This way, the merged process model is kept as small as possible, while still capturing all the behavior of the input models. Moreover, analysts are able to trace back from which original model(s) does a given element in the merged model come from. The algorithm has been prototyped and tested against process models taken from several application domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Childcare workers play a significant role in the learning and development of children in their care. This has major implications for the training of workers. Under new reforms of the childcare industry the Australian government now requires all workers to obtain qualifications from a vocational education and training provider (eg. Technical and Further Education) or university. Effective models of employment-based training are critical to provide training to highly competent workers. This paper presents findings from a study that examined current and emerging models of employment-based training in the childcare sector, particularly at the Diploma level. Semi-structured interviews were conducted with a sample of 16 participants who represented childcare directors, employers, and workers located in childcare services in urban, regional and remote locations in the State of Queensland. The study proposes a ‘best-fit’ employment-based training approach that is characterised by a compendium of five models instead of a ‘one size fits all’. Issues with successful implementation of the EBT models are also discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed orthogonal least-squares techniques for fitting crystalline lens shapes, and used the bootstrap method to determine uncertainties associated with the estimated vertex radii of curvature and asphericities of five different models. Three existing models were investigated including one that uses two separate conics for the anterior and posterior surfaces, and two whole lens models based on a modulated hyperbolic cosine function and on a generalized conic function. Two new models were proposed including one that uses two interdependent conics and a polynomial based whole lens model. The models were used to describe the in vitro shape for a data set of twenty human lenses with ages 7–82 years. The two-conic-surface model (7 mm zone diameter) and the interdependent surfaces model had significantly lower merit functions than the other three models for the data set, indicating that most likely they can describe human lens shape over a wide age range better than the other models (although with the two-conic-surfaces model being unable to describe the lens equatorial region). Considerable differences were found between some models regarding estimates of radii of curvature and surface asphericities. The hyperbolic cosine model and the new polynomial based whole lens model had the best precision in determining the radii of curvature and surface asphericities across the five considered models. Most models found significant increase in anterior, but not posterior, radius of curvature with age. Most models found a wide scatter of asphericities, but with the asphericities usually being positive and not significantly related to age. As the interdependent surfaces model had lower merit function than three whole lens models, there is further scope to develop an accurate model of the complete shape of human lenses of all ages. The results highlight the continued difficulty in selecting an appropriate model for the crystalline lens shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We argue that web service discovery technology should help the user navigate a complex problem space by providing suggestions for services which they may not be able to formulate themselves as (s)he lacks the epistemic resources to do so. Free text documents in service environments provide an untapped source of information for augmenting the epistemic state of the user and hence their ability to search effectively for services. A quantitative approach to semantic knowledge representation is adopted in the form of semantic space models computed from these free text documents. Knowledge of the user’s agenda is promoted by associational inferences computed from the semantic space. The inferences are suggestive and aim to promote human abductive reasoning to guide the user from fuzzy search goals into a better understanding of the problem space surrounding the given agenda. Experimental results are discussed based on a complex and realistic planning activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter will address psychodynamic, cognitive-behavioural, and developmental models in supervision by initially considering the historical underpinnings of each and then examining in turn some of the key processes that are evident in the supervisory relationships. Case studies are included where appropriate to highlight the application of theory to practice and several processes are fully elaborated over all models to enable a contemporary view of style and substance in the supervision context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intuitively, any `bag of words' approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distri- butions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document's initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur's search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spoken term detection (STD) popularly involves performing word or sub-word level speech recognition and indexing the result. This work challenges the assumption that improved speech recognition accuracy implies better indexing for STD. Using an index derived from phone lattices, this paper examines the effect of language model selection on the relationship between phone recognition accuracy and STD accuracy. Results suggest that language models usually improve phone recognition accuracy but their inclusion does not always translate to improved STD accuracy. The findings suggest that using phone recognition accuracy to measure the quality of an STD index can be problematic, and highlight the need for an alternative that is more closely aligned with the goals of the specific detection task.