109 resultados para Rate-equation models
Resumo:
Objectives The primary objective of this research was to investigate wound management nurse practitioner (WMNP) models of service for the purposes of identifying parameters of practice and how patient outcomes are measured. Methods A scoping study was conducted with all authorised WMNPs in Australia from October to December 2012 using survey methodology. A questionnaire was developed to obtain data on the role and practice parameters of authorised WMNPs in Australia. The tool comprised seven sections and included a total of 59 questions. The questionnaire was distributed to all members of the WMNP Online Peer Review Group, to which it was anticipated the majority of WMNPs belonged. Results Twenty-one WMNPs responded (response rate 87%), with the results based on a subset of respondents who stated that, at the time of the questionnaire, they were employed as a WMNP, therefore yielding a response rate of 71% (n≤15). Most respondents (93%; n≤14) were employed in the public sector, with an average of 64 occasions of service per month. The typical length of a new case consultation was 60min, with 32min for follow ups. The most frequently performed activity was wound photography (83%; n≤12), patient, family or carer education (75%; n≤12), Doppler ankle-brachial pressure index assessment (58%; n≤12), conservative sharp wound debridement (58%; n≤12) and counselling (50%; n≤12). The most routinely prescribed medications were local anaesthetics (25%; n≤12) and oral antibiotics (25%; n≤12). Data were routinely collected by 91% of respondents on service-related and wound-related parameters to monitor patient outcomes, to justify and improve health services provided. Conclusion This study yielded important baseline information on this professional group, including data on patient problems managed, the types of interventions implemented, the resources used to accomplish outcomes and how outcomes are measured.
Resumo:
Even though crashes between trains and road users are rare events at railway level crossings, they are one of the major safety concerns for the Australian railway industry. Nearmiss events at level crossings occur more frequently, and can provide more information about factors leading to level crossing incidents. In this paper we introduce a video analytic approach for automatically detecting and localizing vehicles from cameras mounted on trains for detecting near-miss events. To detect and localize vehicles at level crossings we extract patches from an image and classify each patch for detecting vehicles. We developed a region proposals algorithm for generating patches, and we use a Convolutional Neural Network (CNN) for classifying each patch. To localize vehicles in images we combine the patches that are classified as vehicles according to their CNN scores and positions. We compared our system with the Deformable Part Models (DPM) and Regions with CNN features (R-CNN) object detectors. Experimental results on a railway dataset show that the recall rate of our proposed system is 29% higher than what can be achieved with DPM or R-CNN detectors.
Resumo:
Molecular phylogenetic studies of homologous sequences of nucleotides often assume that the underlying evolutionary process was globally stationary, reversible, and homogeneous (SRH), and that a model of evolution with one or more site-specific and time-reversible rate matrices (e.g., the GTR rate matrix) is enough to accurately model the evolution of data over the whole tree. However, an increasing body of data suggests that evolution under these conditions is an exception, rather than the norm. To address this issue, several non-SRH models of molecular evolution have been proposed, but they either ignore heterogeneity in the substitution process across sites (HAS) or assume it can be modeled accurately using the distribution. As an alternative to these models of evolution, we introduce a family of mixture models that approximate HAS without the assumption of an underlying predefined statistical distribution. This family of mixture models is combined with non-SRH models of evolution that account for heterogeneity in the substitution process across lineages (HAL). We also present two algorithms for searching model space and identifying an optimal model of evolution that is less likely to over- or underparameterize the data. The performance of the two new algorithms was evaluated using alignments of nucleotides with 10 000 sites simulated under complex non-SRH conditions on a 25-tipped tree. The algorithms were found to be very successful, identifying the correct HAL model with a 75% success rate (the average success rate for assigning rate matrices to the tree's 48 edges was 99.25%) and, for the correct HAL model, identifying the correct HAS model with a 98% success rate. Finally, parameter estimates obtained under the correct HAL-HAS model were found to be accurate and precise. The merits of our new algorithms were illustrated with an analysis of 42 337 second codon sites extracted from a concatenation of 106 alignments of orthologous genes encoded by the nuclear genomes of Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida albicans. Our results show that second codon sites in the ancestral genome of these species contained 49.1% invariable sites, 39.6% variable sites belonging to one rate category (V1), and 11.3% variable sites belonging to a second rate category (V2). The ancestral nucleotide content was found to differ markedly across these three sets of sites, and the evolutionary processes operating at the variable sites were found to be non-SRH and best modeled by a combination of eight edge-specific rate matrices (four for V1 and four for V2). The number of substitutions per site at the variable sites also differed markedly, with sites belonging to V1 evolving slower than those belonging to V2 along the lineages separating the seven species of Saccharomyces. Finally, sites belonging to V1 appeared to have ceased evolving along the lineages separating S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, implying that they might have become so selectively constrained that they could be considered invariable sites in these species.
Resumo:
Structural equation modeling (SEM) is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with intercorrelated dependent and independent variables. SEM is commonly applied in ecology, but the spatial information commonly found in ecological data remains difficult to model in a SEM framework. Here we propose a simple method for spatially explicit SEM (SE-SEM) based on the analysis of variance/covariance matrices calculated across a range of lag distances. This method provides readily interpretable plots of the change in path coefficients across scale and can be implemented using any standard SEM software package. We demonstrate the application of this method using three studies examining the relationships between environmental factors, plant community structure, nitrogen fixation, and plant competition. By design, these data sets had a spatial component, but were previously analyzed using standard SEM models. Using these data sets, we demonstrate the application of SE-SEM to regularly spaced, irregularly spaced, and ad hoc spatial sampling designs and discuss the increased inferential capability of this approach compared with standard SEM. We provide an R package, sesem, to easily implement spatial structural equation modeling.
Resumo:
Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.
Resumo:
Solid–interstitial fluid interaction, which depends on tissue permeability, is significant to the strain-rate-dependent mechanical behavior of humeral head (shoulder) cartilage. Due to anatomical and biomechanical similarities to that of the human shoulder, kangaroos present a suitable animal model. Therefore, indentation experiments were conducted on kangaroo shoulder cartilage tissues from low (10−4/s) to moderately high (10−2/s) strain-rates. A porohyperelastic model was developed based on the experimental characterization; and a permeability function that takes into account the effect of strain-rate on permeability (strain-rate-dependent permeability) was introduced into the model to investigate the effect of rate-dependent fluid flow on tissue response. The prediction of the model with the strain-rate-dependent permeability was compared with those of the models using constant permeability and strain-dependent permeability. Compared to the model with constant permeability, the models with strain-dependent and strain-rate-dependent permeability were able to better capture the experimental variation at all strain-rates (p<0.05). Significant differences were not identified between models with strain-dependent and strain-rate-dependent permeability at strain-rate of 5×10−3/s (p=0.179). However, at strain-rate of 10−2/s, the model with strain-rate-dependent permeability was significantly better at capturing the experimental results (p<0.005). The findings thus revealed the significance of rate-dependent fluid flow on tissue behavior at large strain-rates, which provides insights into the mechanical deformation mechanisms of cartilage tissues.
Resumo:
Objective: To compare measurements of sleeping metabolic rate (SMR) in infancy with predicted basal metabolic rate (BMR) estimated by the equations of Schofield. Methods: Some 104 serial measurements of SMR by indirect calorimetry were performed in 43 healthy infants at 1.5, 3, 6, 9 and 12 months of age. Predicted BMR was calculated using the weight only (BMR-wo) and weight and height (BMR-wh) equations of Schofield for 0-3-y-olds. Measured SMR values were compared with both predictive values by means of the Bland-Altman statistical test. Results: The mean measured SMR was 1.48 MJ/day. The mean predicted BMR values were 1.66 and 1.47 MJ/day for the weight only and weight and height equations, respectively. The Bland-Altman analysis showed that BMR-wo equation on average overestimated SMR by 0.18 MJ/day (11%) and the BMR-wh equation underestimated SMR by 0.01 MJ/day (1%). However the 95% limits of agreement were wide: -0.64 to + 0.28 MJ/day (28%) for the former equation and -0.39 to + 0.41 MJ/day (27%) for the latter equation. Moreover there was a significant correlation between the mean of the measured and predicted metabolic rate and the difference between them. Conclusions: The wide variation seen in the difference between measured and predicted metabolic rate and the bias probably with age indicates there is a need to measure actual metabolic rate for individual clinical care in this age group.
Resumo:
Gulland's [Gulland, J.A., 1965. Estimation of mortality rates. Annex to Arctic Fisheries Working Group Report (meeting in Hamburg, January 1965). ICES. C.M. 1965, Doc. No. 3 (mimeographed)] virtual population analysis (VPA) is commonly used for studying the dynamics of harvested fish populations. However, it necessitates the solving of a nonlinear equation for the instantaneous rate of fishing mortality of the fish in a population. Pope [Pope, J.G., 1972. An investigation of the accuracy of Virtual Population Analysis using cohort analysis. ICNAF Res. Bull. 9, 65-74. Also available in D.H. Cushing (ed.) (1983), Key Papers on Fish Populations, p. 291-301, IRL Press, Oxford, 405 p.] eliminated this necessity in his cohort analysis by approximating its underlying age- and time-dependent population model. His approximation has since become one of the most commonly used age- and time-dependent fish population models in fisheries science. However, some of its properties are not well understood. For example, many assert that it describes the dynamics of a fish population, from which the catch of fish is taken instantaneously in the middle of the year. Such an assertion has never been proven, nor has its implied instantaneous rate of fishing mortality of the fish of a particular age at a particular time been examined, nor has its implied catch equation been derived from a general catch equation. In this paper, we prove this assertion, examine its implied instantaneous rate of fishing mortality of the fish of a particular age at a particular time, derive its implied catch equation from a general catch equation, and comment on how to structure an age- and time-dependent population model to ensure its internal consistency. This work shows that Gulland's (1965) virtual population analysis and Pope's (1972) cohort analysis lie at the opposite end of a continuous spectrum as a general model for a seasonally occurring fishery; Pope's (1972) approximation implies an infinitely large instantaneous rate of fishing mortality of the fish of a particular age at a particular time in a fishing season of zero length; and its implied catch equation has an undefined instantaneous rate of fishing mortality of the fish in a population, but a well-defined cumulative instantaneous rate of fishing mortality of the fish in the population. This work also highlights a need for a more careful treatment of the times of start and end of a fishing season in fish population models.
Resumo:
Consider a general regression model with an arbitrary and unknown link function and a stochastic selection variable that determines whether the outcome variable is observable or missing. The paper proposes U-statistics that are based on kernel functions as estimators for the directions of the parameter vectors in the link function and the selection equation, and shows that these estimators are consistent and asymptotically normal.
Resumo:
The method of generalized estimating equation-, (GEEs) has been criticized recently for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. However, the feasibility and efficiency of GEE methods can be enhanced considerably by using flexible families of working correlation models. We propose two ways of constructing unbiased estimating equations from general correlation models for irregularly timed repeated measures to supplement and enhance GEE. The supplementary estimating equations are obtained by differentiation of the Cholesky decomposition of the working correlation, or as score equations for decoupled Gaussian pseudolikelihood. The estimating equations are solved with computational effort equivalent to that required for a first-order GEE. Full details and analytic expressions are developed for a generalized Markovian model that was evaluated through simulation. Large-sample ".sandwich" standard errors for working correlation parameter estimates are derived and shown to have good performance. The proposed estimating functions are further illustrated in an analysis of repeated measures of pulmonary function in children.
Resumo:
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.
Resumo:
Background: Standard methods for quantifying IncuCyte ZOOM™ assays involve measurements that quantify how rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area. We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To achieve this we calibrate standard data available from IncuCyte ZOOM™ images to the solution of the Fisher-Kolmogorov model. Results: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with proliferation rate, λ, and carrying capacity density, K. By analysing temporal changes in cell density in several subregions located well-behind the initial position of the leading edge we estimate λ and K. Given these estimates, we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM™ assay and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM™ assays using PC-3 prostate cancer cells and obtain estimates of D, λ and K. Comparing estimates of D, λ and K for a control assay with estimates of D, λ and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively unaffected by EGF. Conclusions: Our approach for estimating D, λ and K from an IncuCyte ZOOM™ assay provides more detail about cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the addition of growth factors affects these processes individually.
Resumo:
Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.
Resumo:
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Resumo:
In this work we numerically model isothermal turbulent swirling flow in a cylindrical burner. Three versions of the RNG k-epsilon model are assessed against performance of the standard k-epsilon model. Sensitivity of numerical predictions to grid refinement, differing convective differencing schemes and choice of (unknown) inlet dissipation rate, were closely scrutinised to ensure accuracy. Particular attention is paid to modelling the inlet conditions to within the range of uncertainty of the experimental data, as model predictions proved to be significantly sensitive to relatively small changes in upstream flow conditions. We also examine the characteristics of the swirl--induced recirculation zone predicted by the models over an extended range of inlet conditions. Our main findings are: - (i) the standard k-epsilon model performed best compared with experiment; - (ii) no one inlet specification can simultaneously optimize the performance of the models considered; - (iii) the RNG models predict both single-cell and double-cell IRZ characteristics, the latter both with and without additional internal stagnation points. The first finding indicates that the examined RNG modifications to the standard k-e model do not result in an improved eddy viscosity based model for the prediction of swirl flows. The second finding suggests that tuning established models for optimal performance in swirl flows a priori is not straightforward. The third finding indicates that the RNG based models exhibit a greater variety of structural behaviour, despite being of the same level of complexity as the standard k-e model. The plausibility of the predicted IRZ features are discussed in terms of known vortex breakdown phenomena.