151 resultados para Pyrolysis Mathematical models


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last few decades, construction project performance has been evaluated due to the increase of delays, cost overruns and quality failures. Growing numbers of disputes, inharmonious working environments, conflict, blame cultures, and mismatches of objectives among project teams have been found to be contributory factors to poor project performance. Performance measurement (PM) approaches have been developed to overcome these issues, however, the comprehensiveness of PM as an overall approach is still criticised in terms of the iron triangle; namely time, cost, and quality. PM has primarily focused on objective measures, however, continuous improvement requires the inclusion of subjective measures, particularly contractor satisfaction (Co-S). It is challenging to deal with the two different groups of large and small-medium contractor satisfaction as to date, Co-S has not been extensively defined, primarily in developing countries such as Malaysia. Therefore, a Co-S model is developed in this research which aims to fulfil the current needs in the construction industry by integrating performance measures to address large and small-medium contractor perceptions. The positivist paradigm used in the research was adhered to by reviewing relevant literature and evaluating expert discussions on the research topic. It yielded a basis for the contractor satisfaction model (CoSMo) development which consists of three elements: contractor satisfaction (Co-S) dimensions; contributory factors and characteristics (project and participant). Using valid questionnaire results from 136 contractors in Malaysia lead to the prediction of several key factors of contractor satisfaction and to an examination of the relationships between elements. The relationships were examined through a series of sequential statistical analyses, namely correlation, one-way analysis of variance (ANOVA), t-tests and multiple regression analysis (MRA). Forward and backward MRAs were used to develop Co-S mathematical models. Sixteen Co-S models were developed for both large and small-medium contractors. These determined that the large contractor Malaysian Co-S was most affected by the conciseness of project scope and quality of the project brief. Contrastingly, Co-S for small-medium contractors was strongly affected by the efficiency of risk control in a project. The results of the research provide empirical evidence in support of the notion that appropriate communication systems in projects negatively contributes to large Co-S with respect to cost and profitability. The uniqueness of several Co-S predictors was also identified through a series of analyses on small-medium contractors. These contractors appear to be less satisfied than large contractors when participants lack effectiveness in timely authoritative decision-making and communication between project team members. Interestingly, the empirical results show that effective project health and safety measures are influencing factors in satisfying both large and small-medium contractors. The perspectives of large and small-medium contractors in respect to the performance of the entire project development were derived from the Co-S models. These were statistically validated and refined before a new Co-S model was developed. Developing such a unique model has the potential to increase project value and benefit all project participants. It is important to improve participant collaboration as it leads to better project performance. This study may encourage key project participants; such as client, consultant, subcontractor and supplier; to increase their attention to contractor needs in the development of a project. Recommendations for future research include investigating other participants‟ perspectives on CoSMo and the impact of the implementation of CoSMo in a project, since this study is focused purely on the contractor perspective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Moving fronts of cells are essential features of embryonic development, wound repair and cancer metastasis. This paper describes a set of experiments to investigate the roles of random motility and proliferation in driving the spread of an initially confined cell population. The experiments include an analysis of cell spreading when proliferation was inhibited. Our data have been analysed using two mathematical models: a lattice-based discrete model and a related continuum partial differential equation model. We obtain independent estimates of the random motility parameter, D, and the intrinsic proliferation rate, λ, and we confirm that these estimates lead to accurate modelling predictions of the position of the leading edge of the moving front as well as the evolution of the cell density profiles. Previous work suggests that systems with a high λ/D ratio will be characterized by steep fronts, whereas systems with a low λ/D ratio will lead to shallow diffuse fronts and this is confirmed in the present study. Our results provide evidence that continuum models, based on the Fisher–Kolmogorov equation, are a reliable platform upon which we can interpret and predict such experimental observations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work has led to the development of empirical mathematical models to quantitatively predicate the changes of morphology in osteocyte-like cell lines (MLO-Y4) in culture. MLO-Y4 cells were cultured at low density and the changes in morphology recorded over 11 hours. Cell area and three dimensional shape features including aspect ratio, circularity and solidity were then determined using widely accepted image analysis software (ImageJTM). Based on the data obtained from the imaging analysis, mathematical models were developed using the non-linear regression method. The developed mathematical models accurately predict the morphology of MLO-Y4 cells for different culture times and can, therefore, be used as a reference model for analyzing MLO-Y4 cell morphology changes within various biological/mechanical studies, as necessary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At present, for mechanical power transmission, Cycloidal drives are most preferred - for compact, high transmission ratio speed reduction, especially for robot joints and manipulator applications. Research on drive-train dynamics of Cycloidal drives is not well-established. This paper presents a testing rig for Cycloidal drives, which would produce data for development of mathematical models and investigation of drive-train dynamics, further aiding in optimising its design

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell invasion, characterised by moving fronts of cells, is an essential aspect of development, repair and disease. Typically, mathematical models of cell invasion are based on the Fisher–Kolmogorov equation. These traditional parabolic models can not be used to represent experimental measurements of individual cell velocities within the invading population since they imply that information propagates with infinite speed. To overcome this limitation we study combined cell motility and proliferation based on a velocity–jump process where information propagates with finite speed. The model treats the total population of cells as two interacting subpopulations: a subpopulation of left–moving cells, $L(x,t)$, and a subpopulation of right–moving cells, $R(x,t)$. This leads to a system of hyperbolic partial differential equations that includes a turning rate, $\Lambda \ge 0$, describing the rate at which individuals in the population change direction of movement. We present exact travelling wave solutions of the system of partial differential equations for the special case where $\Lambda = 0$ and in the limit that $\Lambda \to \infty$. For intermediate turning rates, $0 < \Lambda < \infty$, we analyse the travelling waves using the phase plane and we demonstrate a transition from smooth monotone travelling waves to smooth nonmonotone travelling waves as $\Lambda$ decreases through a critical value $\Lambda_{crit}$. We conclude by providing a qualitative comparison between the travelling wave solutions of our model and experimental observations of cell invasion. This comparison indicates that the small $\Lambda$ limit produces results that are consistent with experimental observations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fractional mathematical models represent a new approach to modelling complex spatial problems in which there is heterogeneity at many spatial and temporal scales. In this paper, a two-dimensional fractional Fitzhugh-Nagumo-monodomain model with zero Dirichlet boundary conditions is considered. The model consists of a coupled space fractional diffusion equation (SFDE) and an ordinary differential equation. For the SFDE, we first consider the numerical solution of the Riesz fractional nonlinear reaction-diffusion model and compare it to the solution of a fractional in space nonlinear reaction-diffusion model. We present two novel numerical methods for the two-dimensional fractional Fitzhugh-Nagumo-monodomain model using the shifted Grunwald-Letnikov method and the matrix transform method, respectively. Finally, some numerical examples are given to exhibit the consistency of our computational solution methodologies. The numerical results demonstrate the effectiveness of the methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell migration is a behaviour critical to many key biological effects, including wound healing, cancerous cell invasion and morphogenesis, the development of an organism from an embryo. However, given that each of these situations is distinctly different and cells are extremely complicated biological objects, interest lies in more basic experiments which seek to remove conflating factors and present a less complex environment within which cell migration can be experimentally examined. These include in vitro studies like the scratch assay or circle migration assay, and ex vivo studies like the colonisation of the hindgut by neural crest cells. The reduced complexity of these experiments also makes them much more enticing as problems to mathematically model, like done here. The primary goal of the mathematical models used in this thesis is to shed light on which cellular behaviours work to generate the travelling waves of invasion observed in these experiments, and to explore how variations in these behaviours can potentially predict differences in this invasive pattern which are experimentally observed when cell types or chemical environment are changed. Relevant literature has already identified the difficulty of distinguishing between these behaviours when using traditional mathematical biology techniques operating on a macroscopic scale, and so here a sophisticated individual-cell-level model, an extension of the Cellular Potts Model (CPM), is been constructed and used to model a scratch assay experiment. This model includes a novel mechanism for dealing with cell proliferations that allowed for the differing properties of quiescent and proliferative cells to be implemented into their behaviour. This model is considered both for its predictive power and used to make comparisons with the travelling waves which result in more traditional macroscopic simulations. These comparisons demonstrate a surprising amount of agreement between the two modelling frameworks, and suggest further novel modifications to the CPM that would allow it to better model cell migration. Considerations of the model’s behaviour are used to argue that the dominant effect governing cell migration (random motility or signal-driven taxis) likely depends on the sort of invasion demonstrated by cells, as easily seen by microscopic photography. Additionally, a scratch assay simulated on a non-homogeneous domain consisting of a ’fast’ and ’slow’ region is also used to further differentiate between these different potential cell motility behaviours. A heterogeneous domain is a novel situation which has not been considered mathematically in this context, nor has it been constructed experimentally to the best of the candidate’s knowledge. Thus this problem serves as a thought experiment used to test the conclusions arising from the simulations on homogeneous domains, and to suggest what might be observed should this non-homogeneous assay situation be experimentally realised. Non-intuitive cell invasion patterns are predicted for diffusely-invading cells which respond to a cell-consumed signal or nutrient, contrasted with rather expected behaviour in the case of random-motility-driven invasion. The potential experimental observation of these behaviours is demonstrated by the individual-cell-level model used in this thesis, which does agree with the PDE model in predicting these unexpected invasion patterns. In the interest of examining such a case of a non-homogeneous domain experimentally, some brief suggestion is made as to how this could be achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lean strategies have been developed to eliminate or reduce manufacturing waste and thus improve operational efficiency in manufacturing processes. However, implementing lean strategies requires a large amount of resources and, in practice, manufacturers encounter difficulties in selecting appropriate lean strategies within their resource constraints. There is currently no systematic methodology available for selecting appropriate lean strategies within a manufacturer's resource constraints. In the lean transformation process, it is also critical to measure the current and desired leanness levels in order to clearly evaluate lean implementation efforts. Despite the fact that many lean strategies are utilized to reduce or eliminate manufacturing waste, little effort has been directed towards properly assessing the leanness of manufacturing organizations. In practice, a single or specific group of metrics (either qualitative or quantitative) will only partially measure the overall leanness. Existing leanness assessment methodologies do not offer a comprehensive evaluation method, integrating both quantitative and qualitative lean measures into a single quantitative value for measuring the overall leanness of an organization. This research aims to develop mathematical models and a systematic methodology for selecting appropriate lean strategies and evaluating the leanness levels in manufacturing organizations. Mathematical models were formulated and a methodology was developed for selecting appropriate lean strategies within manufacturers' limited amount of available resources to reduce their identified wastes. A leanness assessment model was developed by using the fuzzy concept to assess the leanness level and to recommend an optimum leanness value for a manufacturing organization. In the proposed leanness assessment model, both quantitative and qualitative input factors have been taken into account. Based on program developed in MATLAB and C#, a decision support tool (DST) was developed for decision makers to select lean strategies and evaluate the leanness value based on the proposed models and methodology hence sustain the lean implementation efforts. A case study was conducted to demonstrate the effectiveness of these proposed models and methodology. Case study results suggested that out of 10 wastes identified, the case organization (ABC Limited) is able to improve a maximum of six wastes from the selected workstation within their resource limitations. The selected wastes are: unnecessary motion, setup time, unnecessary transportation, inappropriate processing, work in process and raw material inventory and suggested lean strategies are: 5S, Just-In-Time, Kanban System, the Visual Management System (VMS), Cellular Manufacturing, Standard Work Process using method-time measurement (MTM), and Single Minute Exchange of Die (SMED). From the suggested lean strategies, the impact of 5S was demonstrated by measuring the leanness level of two different situations in ABC. After that, MTM was suggested as a standard work process for further improvement of the current leanness value. The initial status of the organization showed a leanness value of 0.12. By applying 5S, the leanness level significantly improved to reach 0.19 and the simulation of MTM as a standard work method shows the leanness value could be improved to 0.31. The optimum leanness value of ABC was calculated to be 0.64. These leanness values provided a quantitative indication of the impacts of improvement initiatives in terms of the overall leanness level to the case organization. Sensitivity analsysis and a t-test were also performed to validate the model proposed. This research advances the current knowledge base by developing mathematical models and methodologies to overcome lean strategy selection and leanness assessment problems. By selecting appropriate lean strategies, a manufacturer can better prioritize implementation efforts and resources to maximize the benefits of implementing lean strategies in their organization. The leanness index is used to evaluate an organization's current (before lean implementation) leanness state against the state after lean implementation and to establish benchmarking (the optimum leanness state). Hence, this research provides a continuous improvement tool for a lean manufacturing organization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An accurate PV module electrical model is presented based on the Shockley diode equation. The simple model has a photo-current current source, a single diode junction and a series resistance, and includes temperature dependences. The method of parameter extraction and model evaluation in Matlab is demonstrated for a typical 60W solar panel. This model is used to investigate the variation of maximum power point with temperature and isolation levels. A comparison of buck versus boost maximum power point tracker (MPPT) topologies is made, and compared with a direct connection to a constant voltage (battery) load. The boost converter is shown to have a slight advantage over the buck, since it can always track the maximum power point.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the development of an analytical model used to simulate the fatigue behaviour of roof cladding during the passage of a tropical cyclone. The model incorporated into a computer program uses wind pressure data from wind tunnel tests in combination with time history information on wind speed and direction during a tropical cyclone, and experimental fatigue characteristics data of roof claddings. The wind pressure data is analysed using a rainflow form of analysis, and a fatigue damage index calculated using a modified form of Miner's rule. Some of the results obtained to date and their significance in relation to the review of current fatigue tests are presented. The model appears to be reasonable for comparative estimation of fatigue life, but an improvement of Miner's rule is required for the prediction of actual fatigue life.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Profiled steel roof claddings in Australia are commonly made of very thin high tensile steel and are crest-fixed with screw fasteners. At present the design of these claddings is entirely based on testing. In order to improve the understanding of the behaviour of these claddings under wind uplift, and thus the design methods, a detailed investigation consisting of a finite element analysis and laboratory experiments was carried out on two-span roofing assemblies of three common roofing profiles. It was found that the failure of the roof cladding system was due to a local failure (dimpling of crests/pull-through) at the fasteners. This paper presents the details of the investigation, the results and then proposes a design method based on the strength of the screwed connections, for which testing of small-scale roofing models and/or using a simple design formula is recommended.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new cold-formed and resistance-welded section known as the hollow flange beam (HFB) has been developed recently in Australia. In contrast to the common lateral-torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral-distortional buckling mode of failure involving lateral deflection, twist, and cross-section change due to web distortion. This lateral-distortional buckling behavior has been shown to cause significant reduction of the available flexural capacity of HFBs. An investigation using finite-element analyses and large-scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the finite-element model and analytical results. The experimental procedure and results are outlined in a companion paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The realistic strength and deflection behavior of industrial and commercial steel portal frame buildings are understood only if the effects of rigidity of end frames and profiled steel claddings are included. The conventional designs ignore these effects and are very much based on idealized two-dimensional (2D) frame behavior. Full-scale tests of a 1212 m steel portal frame building under a range of design load cases indicated that the observed deflections and bending moments in the portal frame were considerably different from those obtained from a 2D analysis of frames ignoring these effects. Three-dimensional (3D) analyses of the same building, including the effects of end frames and cladding, were carried out, and the results agreed well with full-scale test results. Results clearly indicated the need for such an analysis and for testing to study the true behavior of steel portal frame buildings. It is expected that such a 3D analysis will lead to lighter steel frames as the maximum moments and deflections are reduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A primary objective was to produce a comprehensive range of new distributed plasticity analytical benchmark solutions for verification of the concentrated plasticity methods. A distributed plasticity model was developed using shell finite elements to explicitly account for the effects of gradual yielding and spread of plasticity, initial geometric imperfections, residual stresses and local buckling deformations. The model was verified by comparison with large-scale steel frame test results and a variety of existing analytical benchmark solutions. This paper presents a description of the distributed plasticity model and details of the verification study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A series of large-scale tests were performed in order to provide experimental results for verification of the new analytical models. Each of the test frames comprised non-compact sections, and exhibited significant local buckling behaviour prior to failure. This paper presents details of the test program including the test specimens, set-up and instrumentation, procedure, and results.