450 resultados para Post processing
Resumo:
Multi-level concrete buildings requrre substantial temporary formwork structures to support the slabs during construction. The primary function of this formwork is to safely disperse the applied loads so that the slab being constructed, or the portion of the permanent structure already constructed, is not overloaded. Multi-level formwork is a procedure in which a limited number of formwork and shoring sets are cycled up the building as construction progresses. In this process, each new slab is supported by a number of lower level slabs. The new slab load is, essentially, distributed to these supporting slabs in direct proportion to their relative stiffness. When a slab is post-tensioned using draped tendons, slab lift occurs as a portion of the slab self-weight is balanced. The formwork and shores supporting that slab are unloaded by an amount equivalent to the load balanced by the post-tensioning. This produces a load distribution inherently different from that of a conventionally reinforced slab. Through , theoretical modelling and extensive on-site shore load measurement, this research examines the effects of post-tensioning on multilevel formwork load distribution. The research demonstrates that the load distribution process for post-tensioned slabs allows for improvements to current construction practice. These enhancements include a shortening of the construction period; an improvement in the safety of multi-level form work operations; and a reduction in the quantity of form work materials required for a project. These enhancements are achieved through the general improvement in safety offered by post-tensioning during the various formwork operations. The research demonstrates that there is generally a significant improvement in the factors of safety over those for conventionally reinforced slabs. This improvement in the factor of safety occurs at all stages of the multi-level formwork operation. The general improvement in the factors of safety with post-tensioned slabs allows for a shortening of the slab construction cycle time. Further, the low level of load redistribution that occurs during the stripping operations makes post-tensioned slabs ideally suited to reshoring procedures. Provided the overall number of interconnected levels remains unaltered, it is possible to increase the number of reshored levels while reducing the number of undisturbed shoring levels without altering the factors of safety, thereby, reducing the overall quantity of formwork and shoring materials.
Resumo:
This research investigated students' construction of knowledge about the topics of magnetism and electricity emergent from a visit to an interactive science centre and subsequent classroom-based activities linked to the science centre exhibits. The significance of this study is that it analyses critically an aspect of school visits to informal learning centres that has been neglected by researchers in the past, namely the influence of post-visit activities in the classroom on subsequent learning and knowledge construction. Employing an interpretive methodology, the study focused on three areas of endeavour. Firstly, the establishment of a set of principles for the development of post-visit activities, from a constructivist framework, to facilitate students' learning of science. Secondly, to describe and interpret students' scientific understandings : prior t o a visit t o a science museum; following a visit t o a science museum; and following post-visit activities that were related to their museum experiences. Finally, to describe and interpret the ways in which students constructed their understandings: prior to a visit to a science museum; following a visit to a science museum; and following post-visit activities directly related to their museum experiences. The study was designed and implemented in three stages: 1) identification and establishment of the principles for design and evaluation of post-visit activities; 2) a pilot study of specific post-visit activities and data gathering strategies related to student construction of knowledge; and 3) interpretation of students' construction of knowledge from a visit to a science museum and subsequent completion of post-visit activities, which constituted the main study. Twelve students were selected from a year 7 class to participate in the study. This study provides evidence that the series of post-visit activities, related to the museum experiences, resulted in students constructing and reconstructing their personal knowledge of science concepts and principles represented in the science museum exhibits, sometimes towards the accepted scientific understanding and sometimes in different and surprising ways. Findings demonstrate the interrelationships between learning that occurs at school, at home and in informal learning settings. The study also underscores for teachers and staff of science museums and similar centres the importance of planning pre- and post-visit activities, not only to support the development of scientific conceptions, but also to detect and respond to alternative conceptions that may be produced or strengthened during a visit to an informal learning centre. Consistent with contemporary views of constructivism, the study strongly supports the views that : 1) knowledge is uniquely structured by the individual; 2) the processes of knowledge construction are gradual, incremental, and assimilative in nature; 3) changes in conceptual understanding are can be interpreted in the light of prior knowledge and understanding; and 4) knowledge and understanding develop idiosyncratically, progressing and sometimes appearing to regress when compared with contemporary science. This study has implications for teachers, students, museum educators, and the science education community given the lack of research into the processes of knowledge construction in informal contexts and the roles that post-visit activities play in the overall process of learning.