406 resultados para Pedestrian vehicle interface.
Resumo:
Expert knowledge is valuable in many modelling endeavours, particularly where data is not extensive or sufficiently robust. In Bayesian statistics, expert opinion may be formulated as informative priors, to provide an honest reflection of the current state of knowledge, before updating this with new information. Technology is increasingly being exploited to help support the process of eliciting such information. This paper reviews the benefits that have been gained from utilizing technology in this way. These benefits can be structured within a six-step elicitation design framework proposed recently (Low Choy et al., 2009). We assume that the purpose of elicitation is to formulate a Bayesian statistical prior, either to provide a standalone expert-defined model, or for updating new data within a Bayesian analysis. We also assume that the model has been pre-specified before selecting the software. In this case, technology has the most to offer to: targeting what experts know (E2), eliciting and encoding expert opinions (E4), whilst enhancing accuracy (E5), and providing an effective and efficient protocol (E6). Benefits include: -providing an environment with familiar nuances (to make the expert comfortable) where experts can explore their knowledge from various perspectives (E2); -automating tedious or repetitive tasks, thereby minimizing calculation errors, as well as encouraging interaction between elicitors and experts (E5); -cognitive gains by educating users, enabling instant feedback (E2, E4-E5), and providing alternative methods of communicating assessments and feedback information, since experts think and learn differently; and -ensuring a repeatable and transparent protocol is used (E6).
Resumo:
This paper presents a case study of a design for a complete microair vehicle thruster. Fixed-pitch small-scale rotors, brushless motors, lithium-polymer cells, and embedded control are combined to produce a mechanically simple, high-performance thruster with potentially high reliability. The custom rotor design requires a balance between manufacturing simplicity and rigidity of a blade versus its aerodynamic performance. An iterative steady-state aeroelastic simulator is used for holistic blade design. The aerodynamic load disturbances of the rotor-motor system in normal conditions are experimentally characterized. The motors require fast dynamic response for authoritative vehicle flight control. We detail a dynamic compensator that achieves satisfactory closed-loop response time. The experimental rotor-motor plant displayed satisfactory thrust performance and dynamic response.
Resumo:
The Lane Change Test (LCT) is one of the growing number of methods developed to quantify driving performance degradation brought about by the use of in-vehicle devices. Beyond its validity and reliability, for such a test to be of practical use, it must also be sensitive to the varied demands of individual tasks. The current study evaluated the ability of several recent LCT lateral control and event detection parameters to discriminate between visual-manual and cognitive surrogate In-Vehicle Information System tasks with different levels of demand. Twenty-seven participants (mean age 24.4 years) completed a PC version of the LCT while performing visual search and math problem solving tasks. A number of the lateral control metrics were found to be sensitive to task differences, but the event detection metrics were less able to discriminate between tasks. The mean deviation and lane excursion measures were able to distinguish between the visual and cognitive tasks, but were less sensitive to the different levels of task demand. The other LCT metrics examined were less sensitive to task differences. A major factor influencing the sensitivity of at least some of the LCT metrics could be the type of lane change instructions given to participants. The provision of clear and explicit lane change instructions and further refinement of its metrics will be essential for increasing the utility of the LCT as an evaluation tool.
Resumo:
The Georgia Institute of Technology is currently performing research that will result in the development and deployment of three instrumentation packages that allow for automated capture of personal travel-related data for a given time period (up to 10 days). These three packages include: A handheld electronic travel diary (ETD) with Global Positioning System (GPS) capabilities to capture trip information for all modes of travel; A comprehensive electronic travel monitoring system (CETMS), which includes an ETD, a rugged laptop computer, a GPS receiver and antenna, and an onboard engine monitoring system, to capture all trip and vehicle information; and a passive GPS receiver, antenna, and data logger to capture vehicle trips only.
Resumo:
This paper presents a critical review of past research in the work-related driving field in light vehicle fleets (e.g., vehicles < 4.5 tonnes) and an intervention framework that provides future direction for practitioners and researchers. Although work-related driving crashes have become the most common cause of death, injury, and absence from work in Australia and overseas, very limited research has progressed in establishing effective strategies to improve safety outcomes. In particular, the majority of past research has been data-driven, and therefore, limited attention has been given to theoretical development in establishing the behavioural mechanism underlying driving behaviour. As such, this paper argues that to move forward in the field of work-related driving safety, practitioners and researchers need to gain a better understanding of the individual and organisational factors influencing safety through adopting relevant theoretical frameworks, which in turn will inform the development of specifically targeted theory-driven interventions. This paper presents an intervention framework that is based on relevant theoretical frameworks and sound methodological design, incorporating interventions that can be directed at the appropriate level, individual and driving target group.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
On-board mass (OBM) monitoring devices on heavy vehicles (HVs) have been tested in a national programme jointly by Transport Certification Australia Limited and the National Transport Commission. The tests were for, amongst other parameters, accuracy and tamper-evidence. The latter by deliberately tampering with the signals from OBM primary transducers during the tests. The OBM feasibility team is analysing dynamic data recorded at the primary transducers of OBM systems to determine if it can be used to detect tamper events. Tamper-evidence of current OBM systems needs to be determined if jurisdictions are to have confidence in specifying OBM for HVs as part of regulatory schemes. An algorithm has been developed to detect tamper events. The results of its application are detailed here.
Resumo:
Of the numerous factors that play a role in fatal pedestrian collisions, the time of day, day of the week, and time of year can be significant determinants. More than 60% of all pedestrian collisions in 2007 occurred at night, despite the presumed decrease in both pedestrian and automobile exposure during the night. Although this trend is partially explained by factors such as fatigue and alcohol consumption, prior analysis of the Fatality Analysis Reporting System database suggests that pedestrian fatalities increase as light decreases after controlling for other factors. This study applies graphical cross-tabulation, a novel visual assessment approach, to explore the relationships among collision variables. The results reveal that twilight and the first hour of darkness typically observe the greatest frequency of pedestrian fatal collisions. These hours are not necessarily the most risky on a per mile travelled basis, however, because pedestrian volumes are often still high. Additional analysis is needed to quantify the extent to which pedestrian exposure (walking/crossing activity) in these time periods plays a role in pedestrian crash involvement. Weekly patterns of pedestrian fatal collisions vary by time of year due to the seasonal changes in sunset time. In December, collisions are concentrated around twilight and the first hour of darkness throughout the week while, in June, collisions are most heavily concentrated around twilight and the first hours of darkness on Friday and Saturday. Friday and Saturday nights in June may be the most dangerous times for pedestrians. Knowing when pedestrian risk is highest is critically important for formulating effective mitigation strategies and for efficiently investing safety funds. This applied visual approach is a helpful tool for researchers intending to communicate with policy-makers and to identify relationships that can then be tested with more sophisticated statistical tools.