402 resultados para Order-preserving Functions
Resumo:
During the past three decades, the subject of fractional calculus (that is, calculus of integrals and derivatives of arbitrary order) has gained considerable popularity and importance, mainly due to its demonstrated applications in numerous diverse and widespread fields in science and engineering. For example, fractional calculus has been successfully applied to problems in system biology, physics, chemistry and biochemistry, hydrology, medicine, and finance. In many cases these new fractional-order models are more adequate than the previously used integer-order models, because fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and processes that are governed by anomalous diffusion. Hence, there is a growing need to find the solution behaviour of these fractional differential equations. However, the analytic solutions of most fractional differential equations generally cannot be obtained. As a consequence, approximate and numerical techniques are playing an important role in identifying the solution behaviour of such fractional equations and exploring their applications. The main objective of this thesis is to develop new effective numerical methods and supporting analysis, based on the finite difference and finite element methods, for solving time, space and time-space fractional dynamical systems involving fractional derivatives in one and two spatial dimensions. A series of five published papers and one manuscript in preparation will be presented on the solution of the space fractional diffusion equation, space fractional advectiondispersion equation, time and space fractional diffusion equation, time and space fractional Fokker-Planck equation with a linear or non-linear source term, and fractional cable equation involving two time fractional derivatives, respectively. One important contribution of this thesis is the demonstration of how to choose different approximation techniques for different fractional derivatives. Special attention has been paid to the Riesz space fractional derivative, due to its important application in the field of groundwater flow, system biology and finance. We present three numerical methods to approximate the Riesz space fractional derivative, namely the L1/ L2-approximation method, the standard/shifted Gr¨unwald method, and the matrix transform method (MTM). The first two methods are based on the finite difference method, while the MTM allows discretisation in space using either the finite difference or finite element methods. Furthermore, we prove the equivalence of the Riesz fractional derivative and the fractional Laplacian operator under homogeneous Dirichlet boundary conditions – a result that had not previously been established. This result justifies the aforementioned use of the MTM to approximate the Riesz fractional derivative. After spatial discretisation, the time-space fractional partial differential equation is transformed into a system of fractional-in-time differential equations. We then investigate numerical methods to handle time fractional derivatives, be they Caputo type or Riemann-Liouville type. This leads to new methods utilising either finite difference strategies or the Laplace transform method for advancing the solution in time. The stability and convergence of our proposed numerical methods are also investigated. Numerical experiments are carried out in support of our theoretical analysis. We also emphasise that the numerical methods we develop are applicable for many other types of fractional partial differential equations.
Resumo:
To date, studies have focused on the acquisition of alphabetic second languages (L2s) in alphabetic first language (L1) users, demonstrating significant transfer effects. The present study examined the process from a reverse perspective, comparing logographic (Mandarin-Chinese) and alphabetic (English) L1 users in the acquisition of an artificial logographic script, in order to determine whether similar language-specific advantageous transfer effects occurred. English monolinguals, English-French bilinguals and Chinese-English bilinguals learned a small set of symbols in an artificial logographic script and were subsequently tested on their ability to process this script in regard to three main perspectives: L2 reading, L2 working memory (WM), and inner processing strategies. In terms of L2 reading, a lexical decision task on the artificial symbols revealed markedly faster response times in the Chinese-English bilinguals, indicating a logographic transfer effect suggestive of a visual processing advantage. A syntactic decision task evaluated the degree to which the new language was mastered beyond the single word level. No L1-specific transfer effects were found for artificial language strings. In order to investigate visual processing of the artificial logographs further, a series of WM experiments were conducted. Artificial logographs were recalled under concurrent auditory and visuo-spatial suppression conditions to disrupt phonological and visual processing, respectively. No L1-specific transfer effects were found, indicating no visual processing advantage of the Chinese-English bilinguals. However, a bilingual processing advantage was found indicative of a superior ability to control executive functions. In terms of L1 WM, the Chinese-English bilinguals outperformed the alphabetic L1 users when processing L1 words, indicating a language experience-specific advantage. Questionnaire data on the cognitive strategies that were deployed during the acquisition and processing of the artificial logographic script revealed that the Chinese-English bilinguals rated their inner speech as lower than the alphabetic L1 users, suggesting that they were transferring their phonological processing skill set to the acquisition and use of an artificial script. Overall, evidence was found to indicate that language learners transfer specific L1 orthographic processing skills to L2 logographic processing. Additionally, evidence was also found indicating that a bilingual history enhances cognitive performance in L2.
Resumo:
While it is commonly accepted that computability on a Turing machine in polynomial time represents a correct formalization of the notion of a feasibly computable function, there is no similar agreement on how to extend this notion on functionals, that is, what functionals should be considered feasible. One possible paradigm was introduced by Mehlhorn, who extended Cobham's definition of feasible functions to type 2 functionals. Subsequently, this class of functionals (with inessential changes of the definition) was studied by Townsend who calls this class POLY, and by Kapron and Cook who call the same class basic feasible functionals. Kapron and Cook gave an oracle Turing machine model characterisation of this class. In this article, we demonstrate that the class of basic feasible functionals has recursion theoretic properties which naturally generalise the corresponding properties of the class of feasible functions, thus giving further evidence that the notion of feasibility of functionals mentioned above is correctly chosen. We also improve the Kapron and Cook result on machine representation.Our proofs are based on essential applications of logic. We introduce a weak fragment of second order arithmetic with second order variables ranging over functions from NN which suitably characterises basic feasible functionals, and show that it is a useful tool for investigating the properties of basic feasible functionals. In particular, we provide an example how one can extract feasible programs from mathematical proofs that use nonfeasible functions.
Resumo:
In the context of learning paradigms of identification in the limit, we address the question: why is uncertainty sometimes desirable? We use mind change bounds on the output hypotheses as a measure of uncertainty, and interpret ‘desirable’ as reduction in data memorization, also defined in terms of mind change bounds. The resulting model is closely related to iterative learning with bounded mind change complexity, but the dual use of mind change bounds — for hypotheses and for data — is a key distinctive feature of our approach. We show that situations exists where the more mind changes the learner is willing to accept, the lesser the amount of data it needs to remember in order to converge to the correct hypothesis. We also investigate relationships between our model and learning from good examples, set-driven, monotonic and strong-monotonic learners, as well as class-comprising versus class-preserving learnability.
Resumo:
Camera calibration information is required in order for multiple camera networks to deliver more than the sum of many single camera systems. Methods exist for manually calibrating cameras with high accuracy. Manually calibrating networks with many cameras is, however, time consuming, expensive and impractical for networks that undergo frequent change. For this reason, automatic calibration techniques have been vigorously researched in recent years. Fully automatic calibration methods depend on the ability to automatically find point correspondences between overlapping views. In typical camera networks, cameras are placed far apart to maximise coverage. This is referred to as a wide base-line scenario. Finding sufficient correspondences for camera calibration in wide base-line scenarios presents a significant challenge. This thesis focuses on developing more effective and efficient techniques for finding correspondences in uncalibrated, wide baseline, multiple-camera scenarios. The project consists of two major areas of work. The first is the development of more effective and efficient view covariant local feature extractors. The second area involves finding methods to extract scene information using the information contained in a limited set of matched affine features. Several novel affine adaptation techniques for salient features have been developed. A method is presented for efficiently computing the discrete scale space primal sketch of local image features. A scale selection method was implemented that makes use of the primal sketch. The primal sketch-based scale selection method has several advantages over the existing methods. It allows greater freedom in how the scale space is sampled, enables more accurate scale selection, is more effective at combining different functions for spatial position and scale selection, and leads to greater computational efficiency. Existing affine adaptation methods make use of the second moment matrix to estimate the local affine shape of local image features. In this thesis, it is shown that the Hessian matrix can be used in a similar way to estimate local feature shape. The Hessian matrix is effective for estimating the shape of blob-like structures, but is less effective for corner structures. It is simpler to compute than the second moment matrix, leading to a significant reduction in computational cost. A wide baseline dense correspondence extraction system, called WiDense, is presented in this thesis. It allows the extraction of large numbers of additional accurate correspondences, given only a few initial putative correspondences. It consists of the following algorithms: An affine region alignment algorithm that ensures accurate alignment between matched features; A method for extracting more matches in the vicinity of a matched pair of affine features, using the alignment information contained in the match; An algorithm for extracting large numbers of highly accurate point correspondences from an aligned pair of feature regions. Experiments show that the correspondences generated by the WiDense system improves the success rate of computing the epipolar geometry of very widely separated views. This new method is successful in many cases where the features produced by the best wide baseline matching algorithms are insufficient for computing the scene geometry.