508 resultados para Museum conservation methods.
Resumo:
This thesis investigates aspects of encoding the speech spectrum at low bit rates, with extensions to the effect of such coding on automatic speaker identification. Vector quantization (VQ) is a technique for jointly quantizing a block of samples at once, in order to reduce the bit rate of a coding system. The major drawback in using VQ is the complexity of the encoder. Recent research has indicated the potential applicability of the VQ method to speech when product code vector quantization (PCVQ) techniques are utilized. The focus of this research is the efficient representation, calculation and utilization of the speech model as stored in the PCVQ codebook. In this thesis, several VQ approaches are evaluated, and the efficacy of two training algorithms is compared experimentally. It is then shown that these productcode vector quantization algorithms may be augmented with lossless compression algorithms, thus yielding an improved overall compression rate. An approach using a statistical model for the vector codebook indices for subsequent lossless compression is introduced. This coupling of lossy compression and lossless compression enables further compression gain. It is demonstrated that this approach is able to reduce the bit rate requirement from the current 24 bits per 20 millisecond frame to below 20, using a standard spectral distortion metric for comparison. Several fast-search VQ methods for use in speech spectrum coding have been evaluated. The usefulness of fast-search algorithms is highly dependent upon the source characteristics and, although previous research has been undertaken for coding of images using VQ codebooks trained with the source samples directly, the product-code structured codebooks for speech spectrum quantization place new constraints on the search methodology. The second major focus of the research is an investigation of the effect of lowrate spectral compression methods on the task of automatic speaker identification. The motivation for this aspect of the research arose from a need to simultaneously preserve the speech quality and intelligibility and to provide for machine-based automatic speaker recognition using the compressed speech. This is important because there are several emerging applications of speaker identification where compressed speech is involved. Examples include mobile communications where the speech has been highly compressed, or where a database of speech material has been assembled and stored in compressed form. Although these two application areas have the same objective - that of maximizing the identification rate - the starting points are quite different. On the one hand, the speech material used for training the identification algorithm may or may not be available in compressed form. On the other hand, the new test material on which identification is to be based may only be available in compressed form. Using the spectral parameters which have been stored in compressed form, two main classes of speaker identification algorithm are examined. Some studies have been conducted in the past on bandwidth-limited speaker identification, but the use of short-term spectral compression deserves separate investigation. Combining the major aspects of the research, some important design guidelines for the construction of an identification model when based on the use of compressed speech are put forward.
Resumo:
This research investigated students' construction of knowledge about the topics of magnetism and electricity emergent from a visit to an interactive science centre and subsequent classroom-based activities linked to the science centre exhibits. The significance of this study is that it analyses critically an aspect of school visits to informal learning centres that has been neglected by researchers in the past, namely the influence of post-visit activities in the classroom on subsequent learning and knowledge construction. Employing an interpretive methodology, the study focused on three areas of endeavour. Firstly, the establishment of a set of principles for the development of post-visit activities, from a constructivist framework, to facilitate students' learning of science. Secondly, to describe and interpret students' scientific understandings : prior t o a visit t o a science museum; following a visit t o a science museum; and following post-visit activities that were related to their museum experiences. Finally, to describe and interpret the ways in which students constructed their understandings: prior to a visit to a science museum; following a visit to a science museum; and following post-visit activities directly related to their museum experiences. The study was designed and implemented in three stages: 1) identification and establishment of the principles for design and evaluation of post-visit activities; 2) a pilot study of specific post-visit activities and data gathering strategies related to student construction of knowledge; and 3) interpretation of students' construction of knowledge from a visit to a science museum and subsequent completion of post-visit activities, which constituted the main study. Twelve students were selected from a year 7 class to participate in the study. This study provides evidence that the series of post-visit activities, related to the museum experiences, resulted in students constructing and reconstructing their personal knowledge of science concepts and principles represented in the science museum exhibits, sometimes towards the accepted scientific understanding and sometimes in different and surprising ways. Findings demonstrate the interrelationships between learning that occurs at school, at home and in informal learning settings. The study also underscores for teachers and staff of science museums and similar centres the importance of planning pre- and post-visit activities, not only to support the development of scientific conceptions, but also to detect and respond to alternative conceptions that may be produced or strengthened during a visit to an informal learning centre. Consistent with contemporary views of constructivism, the study strongly supports the views that : 1) knowledge is uniquely structured by the individual; 2) the processes of knowledge construction are gradual, incremental, and assimilative in nature; 3) changes in conceptual understanding are can be interpreted in the light of prior knowledge and understanding; and 4) knowledge and understanding develop idiosyncratically, progressing and sometimes appearing to regress when compared with contemporary science. This study has implications for teachers, students, museum educators, and the science education community given the lack of research into the processes of knowledge construction in informal contexts and the roles that post-visit activities play in the overall process of learning.