141 resultados para Mount Oliver
Resumo:
A new small full bridge module for MMCC research is presented. Each full bridge converter cell is a single small (65 × 30 mm) multilayer PCB with two low voltage high current (22 V, 40 A) integrated half bridge ICs and the necessary isolated control signals and auxiliary power supply (2500 V isolation). All devices are surface mount, minimising cell height (4 mm) and parasitic inductance. Each converter cell can be physically stacked with PCB connectors propagating the control signals and inter-cell power connections. Many cells can be trivially stacked to create a large multilevel converter leg with isolated auxiliary power and control signals. Any of the MMCC family members is then easily formed. With a change in placement of stacking connector, a parallel connection of bridges is also possible. Operation of a nine level parallel full bridge is demonstrated at 12 V and 384 kHz switching frequency delivering a 30 W 2 kHz sinewave into a resistive load. A number of new applications for this novel module aside from MMCC development are listed.
Resumo:
Particle emission measurements from a fleet of 14 CNG and 5 Diesel buses were measured both for transient and steady state mode s on a chassis dynamometer with a CVS dilution system. Several transient DT80 cycles and 4 steady sate modes (0, 25, 50 100% of maximum load) were measured for each bus tested. Particle number concentration data was collected by three CPC’s (TSI 3022, 3010 3782WCPC) having D50 cut-offs set to 5, 10 and 20nm respectively. The size distributions were measured with a TSI 3080 SMPS with a 3025 CPC during the steady state modes. Particle mass emissions were measured with a TSI Dustrak. Particle mass emissions for Diesel buses were upto 2 orders of magnitude higher than for CNG buses. Particle number emissions during steady state modes for Diesel busses were 2 to 5 times higher than for CNG busses for all of the tested loads. On the other hand for the DT80 transient cycle particle number emissions were up to 3 times higher for the CNG buses. More detailed analysis of the transient cycles revealed that the reason for this was due to high particle number emissions from CNG busses during the acceleration parts of the cycles. Particles emitted by the CNG busses during acceleration were in the nucleation mode with the majority being smaller than 10nm. Volatility measurements have also shown that they were highly volatile.
Resumo:
A nine level modular multilevel cascade converter (MMCC) based on four full bridge cells is shown driving a piezoelectric ultrasonic transducer at 71 and 39 kHz, in simulation and experimentally. The modular cells are small stackable PCBs, each with two fully integrated surface mount 22 V, 40 A MOSFET half-bridge converters, and include all control signal and power isolation. In this work, the bridges operate at 12 V and 384 kHz, to deliver a 96 Vpp 9 level waveform with an effective switching frequency of 3 MHz. A 9 pH air cored inductor forms a low pass filter in conjunction with the 3000 pF capacitance of the transducer load. Eight equally phase-displaced naturally sampled pulse width modulation (PWM) drive signals, along with the modulating sinusoid, are generated using phase accumulation techniques in a dedicated FPGA. Experimental time domain and FFT plots of the multilevel and transducer output waveforms are presented and discussed.
Resumo:
Schistosomes express a family of integral membrane proteins, called tetraspanins (TSPs), in the outer surface membranes of the tegument. Two of these tetraspanins, Sm-TSP-1 and Sm-TSP-2, confer protection as vaccines in mice, and individuals who are naturally resistant to S. mansoni infection mount a strong IgG response to Sm-TSP-2. To determine their functions in the tegument of S. mansoni we used RNA interference to silence expression of Sm-tsp-1 and Sm-tsp-2 mRNAs. Soaking of parasites in Sm-tsp dsRNAs resulted in 61% (p = 0.009) and 74% (p = 0.009) reductions in Sm-tsp-1 and Sm-tsp-2 transcription levels, respectively, in adult worms, and 67%–75% (p = 0.011) and 69%–89% (p = 0.004) reductions in Sm-tsp-1 and Sm-tsp-2 transcription levels, respectively, in schistosomula compared to worms treated with irrelevant control (luciferase) dsRNA. Ultrastructural morphology of adult worms treated in vitro with Sm-tsp-2 dsRNA displayed a distinctly vacuolated and thinner tegument compared with controls. Schistosomula exposed in vitro to Sm-tsp-2 dsRNA had a significantly thinner and more vacuolated tegument, and morphology consistent with a failure of tegumentary invaginations to close. Injection of mice with schistosomula that had been electroporated with Sm-tsp-1 and Sm-tsp-2 dsRNAs resulted in 61% (p = 0.005) and 83% (p = 0.002) reductions in the numbers of parasites recovered from the mesenteries four weeks later when compared to dsRNA-treated controls. These results imply that tetraspanins play important structural roles impacting tegument development, maturation or stability.
Resumo:
Land-use change, particularly clearing of forests for agriculture, has contributed significantly to the observed rise in atmospheric carbon dioxide concentration. Concern about the impacts on climate has led to efforts to monitor and curtail the rapid increase in concentrations of carbon dioxide and other greenhouse gases in the atmosphere. Internationally, much of the current focus is on the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC). Although electing to not ratify the Protocol, Australia, as a party to the UNFCCC, reports on national greenhouse gas emissions, trends in emissions and abatement measures. In this paper we review the complex accounting rules for human activities affecting greenhouse gas fluxes in the terrestrial biosphere and explore implications and potential opportunities for managing carbon in the savanna ecosystems of northern Australia. Savannas in Australia are managed for grazing as well as for cultural and environmental values against a background of extreme climate variability and disturbance, notably fire. Methane from livestock and non-CO2 emissions from burning are important components of the total greenhouse gas emissions associated with management of savannas. International developments in carbon accounting for the terrestrial biosphere bring a requirement for better attribution of change in carbon stocks and more detailed and spatially explicit data on such characteristics of savanna ecosystems as fire regimes, production and type of fuel for burning, drivers of woody encroachment, rates of woody regrowth, stocking rates and grazing impacts. The benefits of improved biophysical information and of understanding the impacts on ecosystem function of natural factors and management options will extend beyond greenhouse accounting to better land management for multiple objectives.
Resumo:
Investment in early childhood education and care (ECEC) programs is a cornerstone policy of the Australian Government directed toward increasing the educational opportunities and life chances made available to Australian Aboriginal and Torres Strait Islander (Indigenous) children. Yet, ECEC programs are not always effective in supporting sustained attendance of Indigenous families. A site-case analysis of Mount Isa, Queensland was conducted to identify program features that engage and support attendance of Indigenous families. This first study, reports the perspectives of early childhood professionals from across the entire range of group-based licensed (kindergarten and long day care) and non-licensed (playgroups, parent-child education) programs (n=19). Early childhood professionals reported that Indigenous families preferred non-licensed over licensed programs. Reasons suggested for this choice were that non-licensed services provided integration with family supports, were responsive to family circumstance and had a stronger focus on relationship building. Implications for policy and service provision are discussed.
Resumo:
The annual Anzac Day observance is a focus for articulating popular notions of Australian national identity. Early Anzac Day observations were characterised by a diversity of observational modes, many distinctly masculine and militarist in character; including sports, competitions and marches. It was from the late 1920s that the now characteristic structure of the day (dawn service - march -follow-on - afternoon celebrations including eating, drinking and playing of the gambling game two-up, illegal on every other day of the year} became the dominant form. 1 Widely believed to have experienced an extended nadir in the 1960s and 1970s, since the 1980s Anzac Day has arguably become the single most important national event in the Australian calendar, involving probably the largest-numbers of Australians, many of them young, in the same temporal observance in a multitude of locations across the country and around the world.2 To date, there is a rich literature around Anzac Day observations and meanings focussing on its cultural I folkioric role'; the production of (masculinised) national identity;pilgrimage;' popular memory I history;' and the contemporary reshaping of the Anzac myth by and for indigenous participants.'
Resumo:
Locomotion and autonomy in humanoid robots is of utmost importance in integrating them into social and community service type roles. However, the limited range and speed of these robots severely limits their ability to be deployed in situations where fast response is necessary. While the ability for a humanoid to drive a vehicle would aide in increasing their overall mobility, the ability to mount and dismount a vehicle designed for human occupants is a non-trivial problem. To address this issue, this paper presents an innovative approach to enabling a humanoid robot to mount and dismount a vehicle by proposing a simple mounting bracket involving no moving parts. In conjunction with a purpose built robotic vehicle, the mounting bracket successfully allowed a humanoid Nao robot to mount, dismount and drive the vehicle.
Resumo:
Background Chlamydia pecorum is an important pathogen of domesticated livestock including sheep, cattle and pigs. This pathogen is also a key factor in the decline of the koala in Australia. We sequenced the genomes of three koala C. pecorum strains, isolated from the urogenital tracts and conjunctiva of diseased koalas. The genome of the C. pecorum VR629 (IPA) strain, isolated from a sheep with polyarthritis, was also sequenced. Results Comparisons of the draft C. pecorum genomes against the complete genomes of livestock C. pecorum isolates revealed that these strains have a conserved gene content and order, sharing a nucleotide sequence similarity > 98%. Single nucleotide polymorphisms (SNPs) appear to be key factors in understanding the adaptive process. Two regions of the chromosome were found to be accumulating a large number of SNPs within the koala strains. These regions include the Chlamydia plasticity zone, which contains two cytotoxin genes (toxA and toxB), and a 77 kbp region that codes for putative type III effector proteins. In one koala strain (MC/MarsBar), the toxB gene was truncated by a premature stop codon but is full-length in IPTaLE and DBDeUG. Another five pseudogenes were also identified, two unique to the urogenital strains C. pecorum MC/MarsBar and C. pecorum DBDeUG, respectively, while three were unique to the koala C. pecorum conjunctival isolate IPTaLE. An examination of the distribution of these pseudogenes in C. pecorum strains from a variety of koala populations, alongside a number of sheep and cattle C. pecorum positive samples from Australian livestock, confirmed the presence of four predicted pseudogenes in koala C. pecorum clinical samples. Consistent with our genomics analyses, none of these pseudogenes were observed in the livestock C. pecorum samples examined. Interestingly, three SNPs resulting in pseudogenes identified in the IPTaLE isolate were not found in any other C. pecorum strain analysed, raising questions over the origin of these point mutations. Conclusions The genomic data revealed that variation between C. pecorum strains were mainly due to the accumulation of SNPs, some of which cause gene inactivation. The identification of these genetic differences will provide the basis for further studies to understand the biology and evolution of this important animal pathogen. Keywords: Chlamydia pecorum; Single nucleotide polymorphism; Pseudogene; Cytotoxin
Resumo:
Strain-based failure criteria have several advantages over stress-based failure criteria: they can account for elastic and inelastic strains, they utilise direct, observables effects instead of inferred effects (strain gauges vs. stress estimates), and model complete stress-strain curves including pre-peak, non-linear elasticity and post-peak strain weakening. In this study, a strain-based failure criterion derived from thermodynamic first principles utilising the concepts of continuum damage mechanics is presented. Furthermore, implementation of this failure criterion into a finite-element simulation is demonstrated and applied to the stability of underground mining coal pillars. In numerical studies, pillar strength is usually expressed in terms of critical stresses or stress-based failure criteria where scaling with pillar width and height is common. Previous publications have employed the finite-element method for pillar stability analysis using stress-based failure criterion such as Mohr-Coulomb and Hoek-Brown or stress-based scalar damage models. A novel constitutive material model, which takes into consideration anisotropy as well as elastic strain and damage as state variables has been developed and is presented in this paper. The damage threshold and its evolution are strain-controlled, and coupling of the state variables is achieved through the damage-induced degradation of the elasticity tensor. This material model is implemented into the finite-element software ABAQUS and can be applied to 3D problems. Initial results show that this new material model is capable of describing the non-linear behaviour of geomaterials commonly observed before peak strength is reached as well as post-peak strain softening. Furthermore, it is demonstrated that the model can account for directional dependency of failure behaviour (i.e. anisotropy) and has the potential to be expanded to environmental controls like temperature or moisture.
Resumo:
The synthesis, electronic absorption and 1H NMR spectra of a suite of novel porphyrinoids derived from meso-bromoporphyrins by palladium-catalysed aminations using ethyl and tert-butylcarbazates are reported. Instead of the expected carbazate-substituted porphyrins, a facile oxidative dearomatisation of the porphyrin ring occurs in high yield, especially for the nickel(II) complexes, resulting in high yields of 5,15-diiminoporphodimethenes (DIPDs). The analogous zinc(II) and free base DIPDs were also characterised, the former by X-ray crystallography. The oxidation and reduction reactions of DIPDs and their precursor carbazate porphyrins were studied. Density Functional Theory (DFT) was used to calculate the optimised geometries and frontier molecular orbitals of DIPD Ni8c and bis(azocarboxylate) 19c, and Time Dependent DFT calculations allowed the prediction of electronic absorption spectra, whose characteristics corresponded well with those of the observed solution spectra. In the latter case, the calculated low-energy absorptions were unlike those of a typical porphyrin, due to the near-degeneracy of the highest filled frontier orbitals, and the wide energy separation between the unfilled orbitals. This feature was present in the observed spectrum.
Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks
Resumo:
Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.