141 resultados para Least Squares Problem
Resumo:
Global Navigation Satellite Systems (GNSS)-based observation systems can provide high precision positioning and navigation solutions in real time, in the order of subcentimetre if we make use of carrier phase measurements in the differential mode and deal with all the bias and noise terms well. However, these carrier phase measurements are ambiguous due to unknown, integer numbers of cycles. One key challenge in the differential carrier phase mode is to fix the integer ambiguities correctly. On the other hand, in the safety of life or liability-critical applications, such as for vehicle safety positioning and aviation, not only is high accuracy required, but also the reliability requirement is important. This PhD research studies to achieve high reliability for ambiguity resolution (AR) in a multi-GNSS environment. GNSS ambiguity estimation and validation problems are the focus of the research effort. Particularly, we study the case of multiple constellations that include initial to full operations of foreseeable Galileo, GLONASS and Compass and QZSS navigation systems from next few years to the end of the decade. Since real observation data is only available from GPS and GLONASS systems, the simulation method named Virtual Galileo Constellation (VGC) is applied to generate observational data from another constellation in the data analysis. In addition, both full ambiguity resolution (FAR) and partial ambiguity resolution (PAR) algorithms are used in processing single and dual constellation data. Firstly, a brief overview of related work on AR methods and reliability theory is given. Next, a modified inverse integer Cholesky decorrelation method and its performance on AR are presented. Subsequently, a new measure of decorrelation performance called orthogonality defect is introduced and compared with other measures. Furthermore, a new AR scheme considering the ambiguity validation requirement in the control of the search space size is proposed to improve the search efficiency. With respect to the reliability of AR, we also discuss the computation of the ambiguity success rate (ASR) and confirm that the success rate computed with the integer bootstrapping method is quite a sharp approximation to the actual integer least-squares (ILS) method success rate. The advantages of multi-GNSS constellations are examined in terms of the PAR technique involving the predefined ASR. Finally, a novel satellite selection algorithm for reliable ambiguity resolution called SARA is developed. In summary, the study demonstrats that when the ASR is close to one, the reliability of AR can be guaranteed and the ambiguity validation is effective. The work then focuses on new strategies to improve the ASR, including a partial ambiguity resolution procedure with a predefined success rate and a novel satellite selection strategy with a high success rate. The proposed strategies bring significant benefits of multi-GNSS signals to real-time high precision and high reliability positioning services.
Resumo:
The giant freshwater prawn (Macrobrachium rosenbergii) or GFP is one of the most important freshwater crustacean species in the inland aquaculture sector of many tropical and subtropical countries. Since the 1990’s, there has been rapid global expansion of freshwater prawn farming, especially in Asian countries, with an average annual rate of increase of 48% between 1999 and 2001 (New, 2005). In Vietnam, GFP is cultured in a variety of culture systems, typically in integrated or rotational rice-prawn culture (Phuong et al., 2006) and has become one of the most common farmed aquatic species in the country, due to its ability to grow rapidly and to attract high market price and high demand. Despite potential for expanded production, sustainability of freshwater prawn farming in the region is currently threatened by low production efficiency and vulnerability of farmed stocks to disease. Commercial large scale and small scale GFP farms in Vietnam have experienced relatively low stock productivity, large size and weight variation, a low proportion of edible meat (large head to body ratio), scarcity of good quality seed stock. The current situation highlights the need for a systematic stock improvement program for GFP in Vietnam aimed at improving economically important traits in this species. This study reports on the breeding program for fast growth employing combined (between and within) family selection in giant freshwater prawn in Vietnam. The base population was synthesized using a complete diallel cross including 9 crosses from two local stocks (DN and MK strains) and a third exotic stock (Malaysian strain - MY). In the next three selection generations, matings were conducted between genetically unrelated brood stock to produce full-sib and (paternal) half-sib families. All families were produced and reared separately until juveniles in each family were tagged as a batch using visible implant elastomer (VIE) at a body size of approximately 2 g. After tags were verified, 60 to 120 juveniles chosen randomly from each family were released into two common earthen ponds of 3,500 m2 pond for a grow-out period of 16 to 18 weeks. Selection applied at harvest on body weight was a combined (between and within) family selection approach. 81, 89, 96 and 114 families were produced for the Selection line in the F0, F1, F2 and F3 generations, respectively. In addition to the Selection line, 17 to 42 families were produced for the Control group in each generation. Results reported here are based on a data set consisting of 18,387 body and 1,730 carcass records, as well as full pedigree information collected over four generations. Variance and covariance components were estimated by restricted maximum likelihood fitting a multi-trait animal model. Experiments assessed performance of VIE tags in juvenile GFP of different size classes and individuals tagged with different numbers of tags showed that juvenile GFP at 2 g were of suitable size for VIE tags with no negative effects evident on growth or survival. Tag retention rates were above 97.8% and tag readability rates were 100% with a correct assignment rate of 95% through to mature animal size of up to 170 g. Across generations, estimates of heritability for body traits (body weight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) and carcass weight traits (abdominal weight, skeleton-off weight and telson-off weight) were moderate and ranged from 0.14 to 0.19 and 0.17 to 0.21, respectively. Body trait heritabilities estimated for females were significantly higher than for males whereas carcass weight trait heritabilities estimated for females and males were not significantly different (P > 0.05). Maternal and common environmental effects for body traits accounted for 4 to 5% of the total variance and were greater in females (7 to 10%) than in males (4 to 5%). Genetic correlations among body traits were generally high in both sexes. Genetic correlations between body and carcass weight traits were also high in the mixed sexes. Average selection response (% per generation) for body weight (transformed to square root) estimated as the difference between the Selection and the Control group was 7.4% calculated from least squares means (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favourable correlated selection responses (estimated from LSMs) were detected for other body traits (12.1%, 14.5%, 10.4%, 15.5% and 13.3% for body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width, respectively) over three selection generations. Data in the second selection generation showed positive correlated responses for carcass weight traits (8.8%, 8.6% and 8.8% for abdominal weight, skeleton-off weight and telson-off weight, respectively). Data in the third selection generation showed that heritability for body traits were moderate and ranged from 0.06 to 0.11 and 0.11 to 0.22 at weeks 10 and 18, respectively. Body trait heritabilities estimated at week 10 were not significantly lower than at week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Overall our results suggest that growth rate responds well to the application of family selection and carcass weight traits can also be improved in parallel, using this approach. Moreover, selection for high growth rate in GFP can be undertaken successfully before full market size has been reached. The outcome of this study was production of an improved culture strain of GFP for the Vietnamese culture industry that will be trialed in real farm production environments to confirm the genetic gains identified in the experimental stock improvement program.
Resumo:
Introduction: The motivation for developing megavoltage (and kilovoltage) cone beam CT (MV CBCT) capabilities in the radiotherapy treatment room was primarily based on the need to improve patient set-up accuracy. There has recently been an interest in using the cone beam CT data for treatment planning. Accurate treatment planning, however, requires knowledge of the electron density of the tissues receiving radiation in order to calculate dose distributions. This is obtained from CT, utilising a conversion between CT number and electron density of various tissues. The use of MV CBCT has particular advantages compared to treatment planning with kilovoltage CT in the presence of high atomic number materials and requires the conversion of pixel values from the image sets to electron density. Therefore, a study was undertaken to characterise the pixel value to electron density relationship for the Siemens MV CBCT system, MVision, and determine the effect, if any, of differing the number of monitor units used for acquisition. If a significant difference with number of monitor units was seen then pixel value to ED conversions may be required for each of the clinical settings. The calibration of the MV CT images for electron density offers the possibility for a daily recalculation of the dose distribution and the introduction of new adaptive radiotherapy treatment strategies. Methods: A Gammex Electron Density CT Phantom was imaged with the MVCB CT system. The pixel value for each of the sixteen inserts, which ranged from 0.292 to 1.707 relative electron density to the background solid water, was determined by taking the mean value from within a region of interest centred on the insert, over 5 slices within the centre of the phantom. These results were averaged and plotted against the relative electron densities of each insert with a linear least squares fit was preformed. This procedure was performed for images acquired with 5, 8, 15 and 60 monitor units. Results: The linear relationship between MVCT pixel value and ED was demonstrated for all monitor unit settings and over a range of electron densities. The number of monitor units utilised was found to have no significant impact on this relationship. Discussion: It was found that the number of MU utilised does not significantly alter the pixel value obtained for different ED materials. However, to ensure the most accurate and reproducible MV to ED calibration, one MU setting should be chosen and used routinely. To ensure accuracy for the clinical situation this MU setting should correspond to that which is used clinically. If more than one MU setting is used clinically then an average of the CT values acquired with different numbers of MU could be utilized without loss in accuracy. Conclusions: No significant differences have been shown between the pixel value to ED conversion for the Siemens MV CT cone beam unit with change in monitor units. Thus as single conversion curve could be utilised for MV CT treatment planning. To fully utilise MV CT imaging for radiotherapy treatment planning further work will be undertaken to ensure all corrections have been made and dose calculations verified. These dose calculations may be either for treatment planning purposes or for reconstructing the delivered dose distribution from transit dosimetry measurements made using electronic portal imaging devices. This will potentially allow the cumulative dose distribution to be determined through the patient’s multi-fraction treatment and adaptive treatment strategies developed to optimize the tumour response.
Resumo:
Mortality and cost outcomes of elderly intensive care unit (ICU) trauma patients were characterised in a retrospective cohort study from an Australian tertiary ICU. Trauma patients admitted between January 2000 and December 2005 were grouped into three major age categories: aged ≥65 years admitted into ICU (n=272); aged ≥65 years admitted into general ward (n=610) and aged <65 years admitted into ICU (n=1617). Hospital mortality predictors were characterised as odds ratios (OR) using logistic regression. The impact of predictor variables on (log) total hospital-stay costs was determined using least squares regression. An alternate treatment-effects regression model estimated the mortality cost-effect as an endogenous variable. Mortality predictors (P ≤0.0001, comparator: ICU ≥65 years, ventilated) were: ICU <65 not-ventilated (OR 0.014); ICU <65 ventilated (OR 0.090); ICU age ≥65 not-ventilated (OR 0.061) and ward ≥65 (OR 0.086); increasing injury severity score and increased Charlson comorbidity index of 1 and 2, compared with zero (OR 2.21 [1.40 to 3.48] and OR 2.57 [1.45 to 4.55]). The raw mean daily ICU and hospital costs in A$ 2005 (US$) for age <65 and ≥65 to ICU, and ≥65 to the ward were; for year 2000: ICU, $2717 (1462) and $2777 (1494); hospital, $1837 (988) and $1590 (855); ward $933 (502); for year 2005: ICU, $3202 (2393) and $3086 (2307); hospital, $1938 (1449) and $1914 (1431); ward $1180 (882). Cost increments were predicted by age ≥65 and ICU admission, increasing injury severity score, mechanical ventilation, Charlson comorbidity index increments and hospital survival. Mortalitycost-effect was estimated at -63% by least squares regression and -82% by treatment-effects regression model. Patient demographic factors, injury severity and its consequences predict both cost and survival in trauma. The cost mortality effect was biased upwards by conventional least squares regression estimation.
Resumo:
This paper reports on a conceptual model of a larger research effort proceeding from a central interest in the importance of assessing the IS-Support provided to key-user groups. This study conceptualised a new multidimensional IS-Support construct with four dimensions: training, documentation, assistance and authorisation, which form the overarching construct – IS-Support. We argue that a holistic measure for assessing IS-Support should consist of dimensions, and measures, that together assess the variety of the support provided to IS key-user groups. The proposed IS-Support construct is defined as the support the IS key-user groups receive to increase their capabilities in utilising information systems within the organisation. With two interrelated phases, conceptualisation phase and validation phase, to rigorously hypothesise and validate a measurement model, the IS-Support model, proposed in this study, is intended to include the characteristics of analytic theory.
Resumo:
Purpose The neuromuscular mechanisms determining the mechanical behaviour of the knee during landing impact remain poorly understood. It was hypothesised that neuromuscular preparation is subject-specific and ranges along a continuum from passive to active. Methods A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials. Surface EMG of the quadriceps and hamstrings was used to determine pre-impact onset timing, activation amplitude and cocontraction for each trial. Partial least squares regression was used to associate pre-impact preparation with post-impact knee stiffness and coordination. Results The group analysis revealed few significant changes in pre-impact preparation across trial blocks. Single-subject analyses revealed changes in muscle activity that varied in size and direction between individuals. Further, the association between pre-impact preparation and post-impact knee mechanics was subject-specific and ranged along a continuum of strategies. Conclusion The findings suggest that neuromuscular preparation during step landing is subject-specific and its association to post-impact knee mechanics occurs along a continuum, ranging from passive to active control strategies. Further work should examine the implications of these strategies on the distribution of knee forces in-vivo.
Resumo:
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in industrialized societies. The lack of metabolite biomarkers has impeded the clinical diagnosis of atherosclerosis so far. In this study, stable atherosclerosis patients (n=16) and age- and sex-matched non-atherosclerosis healthy subjects (n=28) were recruited from the local community (Harbin, P. R. China). The plasma was collected from each study subject and was subjected to metabolomics analysis by GC/MS. Pattern recognition analyses (principal components analysis, orthogonal partial least-squares discriminate analysis, and hierarchical clustering analysis) commonly demonstrated plasma metabolome, which was significantly different from atherosclerotic and non-atherosclerotic subjects. The development of atherosclerosis-induced metabolic perturbations of fatty acids, such as palmitate, stearate, and 1-monolinoleoylglycerol, was confirmed consistent with previous publication, showing that palmitate significantly contributes to atherosclerosis development via targeting apoptosis and inflammation pathways. Altogether, this study demonstrated that the development of atherosclerosis directly perturbed fatty acid metabolism, especially that of palmitate, which was confirmed as a phenotypic biomarker for clinical diagnosis of atherosclerosis.
Resumo:
Poor health and injury represent major obstacles to the future economic security of Australia. The national economic cost of work-related injury is estimated at $57.5 billion p/a. Since exposure to high physical demands is a major risk factor for musculoskeletal injury, monitoring and managing such physical activity levels in workers is a potentially important injury prevention strategy. Current injury monitoring practices are inadequate for the provision of clinically valuable information about the tissue specific responses to physical exertion. Injury of various soft tissue structures can manifest over time through accumulation of micro-trauma. Such micro-trauma has a propensity to increase the risk of acute injuries to soft-tissue structures such as muscle or tendon. As such, the capacity to monitor biomarkers that result from the disruption of these tissues offers a means of assisting the pre-emptive management of subclinical injury prior to acute failure or for evaluation of recovery processes. Here we have adopted an in-vivo exercise induced muscle damage model allowing the application of laboratory controlled conditions to assist in uncovering biochemical indicators associated with soft-tissue trauma and recovery. Importantly, urine was utilised as the diagnostic medium since it is non-invasive to collect, more acceptable to workers and less costly to employers. Moreover, it is our hypothesis that exercise induced tissue degradation products enter the circulation and are subsequently filtered by the kidney and pass through to the urine. To test this hypothesis a range of metabolomic and proteomic discovery-phase techniques were used, along with targeted approaches. Several small molecules relating to tissue damage were identified along with a series of skeletal muscle-specific protein fragments resulting from exercise induced soft-tissue damage. Each of the potential biomolecular markers appeared to be temporally present within urine. Moreover, the regulation of abundance seemed to be associated with functional recovery following the injury. This discovery may have important clinical applications for monitoring of a variety of inflammatory myopathies as well as novel applications in monitoring of the musculoskeletal health status of workers, professional athletes and/or military personnel to reduce the onset of potentially debilitating musculoskeletal injuries within these professions.
Resumo:
We estimated genetic changes in body and carcass weight traits in a giant freshwater prawn (GFP) (Macrobrachium rosenbergii) population selected for increased body weight at harvest in Vietnam. The data set consisted of 18,387 individual body and 1730 carcass weight records, as well as full pedigree information collected over four generations. Average selection response (per generation) in body weight at harvest (transformed to square root) estimated as the difference between the Selection line and the Control group was 7.4% calculated from least squares mean (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favorable correlated selection responses (estimated from LSMs) were found for other body traits including: total length, cephalothorax length, abdominal length, cephalothorax width, and abdominal width (12.1%, 14.5%, 10.4%, 15.5% and 13.3% over three selection generations, respectively). Data in the second generation of selection showed positive correlated responses for carcass weight traits including: abdominal weight, exoskeleton-off weight, and telson-off weight of 8.8%, 8.6% and 8.8%, respectively. We conclude that body weight at harvest responded well to the application of combined (between and within) family selection and correlated responses in carcass weight traits were favorable.
Resumo:
Aim To examine the mediating effect of coping strategies on the consequences of nursing and non-nursing (administrative) stressors on the job satisfaction of nurses during change management. Background Organisational change can result in an increase in nursing and nonnursing- related stressors, which can have a negative impact on the job satisfaction of nurses employed in health-care organisations. Method Matched data were collected in 2009 via an online survey at two timepoints (six months apart). Results Partial least squares path analysis revealed a significant causal relationship between Time 1 administrative and role stressors and an increase in nursing-specific stressors in Time 2. A significant relationship was also identified between job-specific nursing stressors and the adoption of effective coping strategies to deal with increased levels of change-induced stress and strain and the likelihood of reporting higher levels of job satisfaction in Time 2. Conclusions The effectiveness of coping strategies is critical in helping nurses to deal with the negative consequences of organisational change. Implications for nursing management This study shows that there is a causal relationship between change, non-nursing stressors and job satisfaction. Senior management should implement strategies aimed at reducing nursing and nonnursing stress during change in order to enhance the job satisfaction of nurses. Keywords: Australia, change management, job satisfaction, nursing and non-nursing stressors, public and non-profit sector
Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage
Resumo:
The determination of the characteristics of articular cartilage such as thickness, stiffness and swelling, especially in the form that can facilitate real-time decisions and diagnostics is still a matter for research and development. This paper correlates near infrared spectroscopy with mechanically measured cartilage thickness to establish a fast, non-destructive, repeatable and precise protocol for determining this tissue property. Statistical correlation was conducted between the thickness of bovine cartilage specimens (n = 97) and regions of their near infrared spectra. Nine regions were established along the full absorption spectrum of each sample and were correlated with the thickness using partial least squares (PLS) regression multivariate analysis. The coefficient of determination (R2) varied between 53 and 93%, with the most predictive region (R2 = 93.1%, p < 0.0001) for cartilage thickness lying in the region (wavenumber) 5350–8850 cm−1. Our results demonstrate that the thickness of articular cartilage can be measured spectroscopically using NIR light. This protocol is potentially beneficial to clinical practice and surgical procedures in the treatment of joint disease such as osteoarthritis.
Resumo:
This thesis investigates the use of near infrared (NIR) spectroscopic methods for rapid measurement of nutrient elements in mill mud and mill ash. Adoption of NIR-based analyses for carbon, nitrogen, phosphorus, potassium and silicon will allow Australian sugarcane farmers to comply with recent legislative changes, and act within recommended precision farming frameworks. For these analyses, NIR spectroscopic methods surpass several facets of traditional wet chemistry techniques, dramatically reducing costs, required expertise and chemical exposure, while increasing throughput and access to data. Further, this technology can be applied in various modes, including laboratory, at-line and on-line installations, allowing targeted measurement.
Resumo:
Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.
Resumo:
A generalised gamma bidding model is presented, which incorporates many previous models. The log likelihood equations are provided. Using a new method of testing, variants of the model are fitted to some real data for construction contract auctions to find the best fitting models for groupings of bidders. The results are examined for simplifying assumptions, including all those in the main literature. These indicate no one model to be best for all datasets. However, some models do appear to perform significantly better than others and it is suggested that future research would benefit from a closer examination of these.
Resumo:
Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated by prediction data sets.