130 resultados para L71 - Mining, Extraction, and Refining:
Resumo:
Local image feature extractors that select local maxima of the determinant of Hessian function have been shown to perform well and are widely used. This paper introduces the negative local minima of the determinant of Hessian function for local feature extraction. The properties and scale-space behaviour of these features are examined and found to be desirable for feature extraction. It is shown how this new feature type can be implemented along with the existing local maxima approach at negligible extra processing cost. Applications to affine covariant feature extraction and sub-pixel precise corner extraction are demonstrated. Experimental results indicate that the new corner detector is more robust to image blur and noise than existing methods. It is also accurate for a broader range of corner geometries. An affine covariant feature extractor is implemented by combining the minima of the determinant of Hessian with existing scale and shape adaptation methods. This extractor can be implemented along side the existing Hessian maxima extractor simply by finding both minima and maxima during the initial extraction stage. The minima features increase the number of correspondences by two to four fold. The additional minima features are very distinct from the maxima features in descriptor space and do not make the matching process more ambiguous.
Resumo:
Background: Trauma resulting from traffic crashes poses a significant problem in highly motorised countries. Over a million people worldwide are killed annually and 50 million are critically injured as a result of traffic collisions. In Australia, road crashes cost an average of $17 billion annually in personal loss of income and quality of life, organisational losses in productivity and workplace quality, and health care costs. Driver aggression has been identified as a key factor contributing to crashes, and many motorists report experiencing mild forms of aggression (e.g., rude gestures, horn honking). However despite this concern, driver aggression has received relatively little attention in empirical research, and existing research has been hampered by a number of methodological and conceptual shortcomings. Specifically, there has been substantial disagreement regarding what constitutes aggressive driving and a failure to examine both the situational factors and the emotional and cognitive processes underlying driver aggression. To enhance current understanding of aggressive driving, a model of driver aggression that highlights the cognitive and emotional processes at play in aggressive driving incidents is proposed. Aims: The research aims to improve current understanding of the complex nature of driver aggression by testing and refining a model of aggressive driving that incorporates the person-related and situational factors and the cognitive and emotional appraisal processes fundamental to driver aggression. In doing so, the research will assist to provide a clear definition of what constitutes aggressive driving, assist to identify on-road incidents that trigger driver aggression, and identify the emotional and cognitive appraisal processes that underlie driver aggression. Methods: The research involves three studies. Firstly, to contextualise the model and explore the cognitive and emotional aspects of driver aggression, a diary-based study using self-reports of aggressive driving events will be conducted with a general population of drivers. This data will be supplemented by in-depth follow-up interviews with a sub-sample of participants. Secondly, to test generalisability of the model, a large sample of drivers will be asked to respond to video-based scenarios depicting driving contexts derived from incidents identified in Study 1 as inciting aggression. Finally, to further operationalise and test the model an advanced driving simulator will be used with sample of drivers. These drivers will be exposed to various driving scenarios that would be expected to trigger negative emotional responses. Results: Work on the project has commenced and progress on the first study will be reported.
Resumo:
Background: Integrating 3D virtual world technologies into educational subjects continues to draw the attention of educators and researchers alike. The focus of this study is the use of a virtual world, Second Life, in higher education teaching. In particular, it explores the potential of using a virtual world experience as a learning component situated within a curriculum delivered predominantly through face-to-face teaching methods. Purpose: This paper reports on a research study into the development of a virtual world learning experience designed for marketing students taking a Digital Promotions course. The experience was a field trip into Second Life to allow students to investigate how business branding practices were used for product promotion in this virtual world environment. The paper discusses the issues involved in developing and refining the virtual course component over four semesters. Methods: The study used a pedagogical action research approach, with iterative cycles of development, intervention and evaluation over four semesters. The data analysed were quantitative and qualitative student feedback collected after each field trip as well as lecturer reflections on each cycle. Sample: Small-scale convenience samples of second- and third-year students studying in a Bachelor of Business degree, majoring in marketing, taking the Digital Promotions subject at a metropolitan university in Queensland, Australia participated in the study. The samples included students who had and had not experienced the field trip. The numbers of students taking part in the field trip ranged from 22 to 48 across the four semesters. Findings and Implications: The findings from the four iterations of the action research plan helped identify key considerations for incorporating technologies into learning environments. Feedback and reflections from the students and lecturer suggested that an innovative learning opportunity had been developed. However, pedagogical potential was limited, in part, by technological difficulties and by student perceptions of relevance.
Resumo:
The changing demographics of the mining workforce and the increasing demand for skilled workers increases the importance of sustaining a healthy workforce now and for the future. Although health is strongly related to safety, the two areas are not well integrated and the relationship is poorly understood. As such there is an important need to raise the profile of health within the Occupational Health and Safety (OH&S) domain. The mining industry carries health and safety risks, often greater than other occupations. Whilst the mining industry is regulated by stringent OH&S controls, the very nature of the work and environmental influences expose employees to a greater number of injury risk factors than many other industries. In contrast to its excellent safety record, compared to most other industries, the mining workforce has a high proportion of chronic health problems. These problems can be exacerbated by the ageing of the workforce, regional location of sites and organisational issues influencing work demands. A major focus has been on the treatment of these conditions with relatively limited attention to prevention strategies. An important prevention strategy is the raising of awareness among the workforce of health issues and the significant increase in the volume of health related information has provided an excellent opportunity to access relevant information. Unfortunately, this information is of varying quality, may not be evidence based, and may provide the wrong guidance to the development of interventions designed to improve health. Limited time of most employees and potential lack of knowledge of ability to differentiate quality information presents additional problems or barriers to increasing awareness of health issues...
Resumo:
This paper presents an overview of NTCIR-9 Cross-lingual Link Discovery (Crosslink) task. The overview includes: the motivation of cross-lingual link discovery; the Crosslink task definition; the run submission specification; the assessment and evaluation framework; the evaluation metrics; and the evaluation results of submitted runs. Cross-lingual link discovery (CLLD) is a way of automatically finding potential links between documents in different languages. The goal of this task is to create a reusable resource for evaluating automated CLLD approaches. The results of this research can be used in building and refining systems for automated link discovery. The task is focused on linking between English source documents and Chinese, Korean, and Japanese target documents.
Quantity of documentation of maltreatment risk factors in injury-related paediatric hospitalisations
Resumo:
Background While child maltreatment is recognised as a global problem, solid epidemiological data on the prevalence of child maltreatment and risk factors associated with child maltreatment is lacking in Australia and internationally. There have been recent calls for action to improve the evidence-base capturing and describing child abuse, particularly those data captured within the health sector. This paper describes the quantity of documentation of maltreatment risk factors in injury-related paediatric hospitalisations in Queensland, Australia. Methods This study involved a retrospective medical record review, text extraction and coding methodology to assess the quantity of documentation of risk factors and the subsequent utility of data in hospital records for describing child maltreatment and data linkage to Child Protection Service (CPS). Results There were 433 children in the maltreatment group and 462 in the unintentional injury group for whom medical records could be reviewed. Almost 93% of the any maltreatment code sample, but only 11% of the unintentional injury sample had documentation identified indicating the presence of any of 20 risk factors. In the maltreatment group the most commonly documented risk factor was history of abuse (41%). In those with an unintentional injury, the most commonly documented risk factor was alcohol abuse of the child or family (3%). More than 93% of the maltreatment sample also linked to a child protection record. Of concern are the 16% of those children who linked to child protection who did not have documented risk factors in the medical record. Conclusion Given the importance of the medical record as a source of information about children presenting to hospital for treatment and as a potential source of evidence for legal action the lack of documentation is of concern. The details surrounding the injury admission and consideration of any maltreatment related risk factors, both identifying their presence and ruling them out are required for each and every case. This highlights the need for additional training for clinicians to understand the importance of their documentation in child injury cases.
Resumo:
In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.
Resumo:
The design and construction community has shown increasing interest in adopting building information models (BIMs). The richness of information provided by BIMs has the potential to streamline the design and construction processes by enabling enhanced communication, coordination, automation and analysis. However, there are many challenges in extracting construction-specific information out of BIMs. In most cases, construction practitioners have to manually identify the required information, which is inefficient and prone to error, particularly for complex, large-scale projects. This paper describes the process and methods we have formalized to partially automate the extraction and querying of construction-specific information from a BIM. We describe methods for analyzing a BIM to query for spatial information that is relevant for construction practitioners, and that is typically represented implicitly in a BIM. Our approach integrates ifcXML data and other spatial data to develop a richer model for construction users. We employ custom 2D topological XQuery predicates to answer a variety of spatial queries. The validation results demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
Building information modeling (BIM) is an emerging technology and process that provides rich and intelligent design information models of a facility, enabling enhanced communication, coordination, analysis, and quality control throughout all phases of a building project. Although there are many documented benefits of BIM for construction, identifying essential construction-specific information out of a BIM in an efficient and meaningful way is still a challenging task. This paper presents a framework that combines feature-based modeling and query processing to leverage BIM for construction. The feature-based modeling representation implemented enriches a BIM by representing construction-specific design features relevant to different construction management (CM) functions. The query processing implemented allows for increased flexibility to specify queries and rapidly generate the desired view from a given BIM according to the varied requirements of a specific practitioner or domain. Central to the framework is the formalization of construction domain knowledge in the form of a feature ontology and query specifications. The implementation of our framework enables the automatic extraction and querying of a wide-range of design conditions that are relevant to construction practitioners. The validation studies conducted demonstrate that our approach is significantly more effective than existing solutions. The research described in this paper has the potential to improve the efficiency and effectiveness of decision-making processes in different CM functions.
Resumo:
Background: Optimal adherence to antiretroviral therapy (ART) is necessary for people living with HIV/AIDS (PLHIV). There have been relatively few systematic analyses of factors that promote or inhibit adherence to antiretroviral therapy among PLHIV in Asia. This study assessed ART adherence and examined factors associated with suboptimal adherence in northern Viet Nam. Methods: Data from 615 PLHIV on ART in two urban and three rural outpatient clinics were collected by medical record extraction and from patient interviews using audio computer-assisted self-interview (ACASI). Results: The prevalence of suboptimal adherence was estimated to be 24.9% via a visual analogue scale (VAS) of past-month dose-missing and 29.1% using a modified Adult AIDS Clinical Trial Group scale for on-time dose-taking in the past 4 days. Factors significantly associated with the more conservative VAS score were: depression (p < 0.001), side-effect experiences (p < 0.001), heavy alcohol use (p = 0.001), chance health locus of control (p = 0.003), low perceived quality of information from care providers (p = 0.04) and low social connectedness (p = 0.03). Illicit drug use alone was not significantly associated with suboptimal adherence, but interacted with heavy alcohol use to reduce adherence (p < 0.001). Conclusions: This is the largest survey of ART adherence yet reported from Asia and the first in a developing country to use the ACASI method in this context. The evidence strongly indicates that ART services in Viet Nam should include screening and treatment for depression, linkage with alcohol and/or drug dependence treatment, and counselling to address the belief that chance or luck determines health outcomes.
Resumo:
This report describes the available functionality and use of the ClusterEval evaluation software. It implements novel and standard measures for the evaluation of cluster quality. This software has been used at the INEX XML Mining track and in the MediaEval Social Event Detection task.
Resumo:
Risk identification is one of the most challenging stages in the risk management process. Conventional risk management approaches provide little guidance and companies often rely on the knowledge of experts for risk identification. In this paper we demonstrate how risk indicators can be used to predict process delays via a method for configuring so-called Process Risk Indicators(PRIs). The method learns suitable configurations from past process behaviour recorded in event logs. To validate the approach we have implemented it as a plug-in of the ProM process mining framework and have conducted experiments using various data sets from a major insurance company.
Resumo:
This study investigated potential markers within chromosomal, mitochondrial DNA (mtDNA) and ribosomal RNA (rRNA) with the aim of developing a DNA based method to allow differentiation between animal species. Such discrimination tests may have important applications in the forensic science, agriculture, quarantine and customs fields. DNA samples from five different animal individuals within the same species for 10 species of animal (including human) were analysed. DNA extraction and quantitation followed by PCR amplification and GeneScan visualisation formed the basis of the experimental analysis. Five gene markers from three different types of genes were investigated. These included genomic markers for the β-actin and TP53 tumor suppressor gene. Mitochondrial DNA markers, designed by Bataille et al. [Forensic Sci. Int. 99 (1999) 165], examined the Cytochrome b gene and Hypervariable Displacement Loop (D-Loop) region. Finally, a ribosomal RNA marker for the 28S rRNA gene optimised by Naito et al. [J. Forensic Sci. 37 (1992) 396] was used as a possible marker for speciation. Results showed a difference of only several base pairs between all species for the β-actin and 28S markers, with the exception of Sus scrofa (pig) β-actin fragment length, which produced a significantly smaller fragment. Multiplexing of Cytochrome b and D-Loop markers gave limited species information, although positive discrimination of human DNA was evident. The most specific and discriminatory results were shown using the TP53 gene since this marker produced greatest fragment size differences between animal species studied. Sample differentiation for all species was possible following TP53 amplification, suggesting that this gene could be used as a potential animal species identifier.
Resumo:
An accurate PV module electrical model is presented based on the Shockley diode equation. The simple model has a photo-current current source, a single diode junction and a series resistance, and includes temperature dependences. The method of parameter extraction and model evaluation in Matlab is demonstrated for a typical 60W solar panel. This model is used to investigate the variation of maximum power point with temperature and isolation levels. A comparison of buck versus boost maximum power point tracker (MPPT) topologies is made, and compared with a direct connection to a constant voltage (battery) load. The boost converter is shown to have a slight advantage over the buck, since it can always track the maximum power point.
Resumo:
An accurate PV module electrical model is presented based on the Shockley diode equation. The simple model has a photo-current current source, a single diode junction and a series resistance, and includes temperature dependences. The method of parameter extraction and model evaluation in Matlab is demonstrated for a typical 60W solar panel. This model is used to investigate the variation of maximumpower point with temperature and insolation levels. A comparison of buck versus boostmaximum power point tracker (MPPT) topologies is made, and compared with a direct connection to a constant voltage (battery) load. The boost converter is shown to have a slight advantage over the buck, since it can always track the maximum power point.