118 resultados para Input-output model
Resumo:
Executive Summary Emergency Departments (EDs) locally, nationally and internationally are becoming increasingly busy. Within this context, it can be challenging to deliver a health service that is safe, of high quality and cost-effective. Whilst various models are described within the literature that aim to measure ED ‘work’ or ‘activity’, they are often not linked to a measure of costs to provide such activity. It is important for hospital and ED managers to understand and apply this link so that optimal staffing and financial resourcing can be justifiably sought. This research is timely given that Australia has moved towards a national Activity Based Funding (ABF) model for ED activity. ABF is believed to increase transparency of care and fairness (i.e. equal work receives equal pay). ABF involves a person-, performance- or activity-based payment system, and thus a move away from historical “block payment” models that do not incentivise efficiency and quality. The aim of the Statewide Workforce and Activity-Based Funding Modelling Project in Queensland Emergency Departments (SWAMPED) is to identify and describe best practice Emergency Department (ED) workforce models within the current context of ED funding that operates under an ABF model. The study is comprised of five distinct phases. This monograph (Phase 1) comprises a systematic review of the literature that was completed in June 2013. The remaining phases include a detailed survey of Queensland hospital EDs’ resource levels, activity and operational models of care, development of new resource models, development of a user-friendly modelling interface for ED mangers, and production of a final report that identifies policy implications. The anticipated deliverable outcome of this research is the development of an ABF based Emergency Workforce Modelling Tool that will enable ED managers to profile both their workforce and operational models of care. Additionally, the tool will assist with the ability to more accurately inform adequate staffing numbers required in the future, inform planning of expected expenditures and be used for standardisation and benchmarking across similar EDs. Summary of the Findings Within the remit of this review of the literature, the main findings include: 1. EDs are becoming busier and more congested Rising demand, barriers to ED throughput and transitions of care all contribute to ED congestion. In addition requests by organisational managers and the community require continued broadening of the scope of services required of the ED and further increases in demand. As the population live longer with more lifestyle diseases their propensity to require ED care continues to grow. 2. Various models of care within EDs exist Models often vary to account for site specific characteritics to suit staffing profile, ED geographical location (e.g. metropolitan or rural site), and patient demographic profile (e.g. paediatrics, older persons, ethnicity). Existing and new models implemented within EDs often depend on the target outcome requiring change. Generally this is focussed on addressing issues at the input, throughput or output areas of the ED. Even with models targeting similar demographic or illness, the structure and process elements underpinning the model can vary, which can impact on outcomes and variance to the patient and carer experience between and within EDs. Major models of care to manage throughput inefficiencies include: A. Workforce Models of Care focus on the appropriate level of staffing for a given workload to provide prompt, timely and clinically effective patient care within an emergency care setting. The studies reviewed suggest that the early involvement of senior medical decision maker and/or specialised nursing roles such as Emergency Nurse Practitioners and Clinical Initiatives Nurse, primary contact or extended scope Allied Health Practitioners can facilitate patient flow and improve key indicators such as length of stay and reducing the number of those who did not wait to be seen amongst others. B. Operational Models of Care within EDs focus on mechanisms for streaming (e.g. fast-tracking) or otherwise grouping patient care based on acuity and complexity to assist with minimising any throughput inefficiencies. While studies support the positive impact of these models in general, it appears that they are most effective when they are adequately resourced. 3. Various methods of measuring ED activity exist Measuring ED activity requires careful consideration of models of care and staffing profile. Measuring activity requires the ability to account for factors including: patient census, acuity, LOS, intensity of intervention, department skill-mix plus an adjustment for non-patient care time. 4. Gaps in the literature Continued ED growth calls for new and innovative care delivery models that are safe, clinically effective and cost effective. New roles and stand-alone service delivery models are often evaluated in isolation without considering the global and economic impact on staffing profiles. Whilst various models of accounting for and measuring health care activity exist, costing studies and cost effectiveness studies are lacking for EDs making accurate and reliable assessments of care models difficult. There is a necessity to further understand, refine and account for measures of ED complexity that define a workload upon which resources and appropriate staffing determinations can be made into the future. There is also a need for continued monitoring and comprehensive evaluation of newly implemented workforce modelling tools. This research acknowledges those gaps and aims to: • Undertake a comprehensive and integrated whole of department workforce profiling exercise relative to resources in the context of ABF. • Inform workforce requirements based on traditional quantitative markers (e.g. volume and acuity) combined with qualitative elements of ED models of care; • Develop a comprehensive and validated workforce calculation tool that can be used to better inform or at least guide workforce requirements in a more transparent manner.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.
Resumo:
NTRUEncrypt is a fast and practical lattice-based public-key encryption scheme, which has been standardized by IEEE, but until recently, its security analysis relied only on heuristic arguments. Recently, Stehlé and Steinfeld showed that a slight variant (that we call pNE) could be proven to be secure under chosen-plaintext attack (IND-CPA), assuming the hardness of worst-case problems in ideal lattices. We present a variant of pNE called NTRUCCA, that is IND-CCA2 secure in the standard model assuming the hardness of worst-case problems in ideal lattices, and only incurs a constant factor overhead in ciphertext and key length over the pNE scheme. To our knowledge, our result gives the first IND-CCA2 secure variant of NTRUEncrypt in the standard model, based on standard cryptographic assumptions. As an intermediate step, we present a construction for an All-But-One (ABO) lossy trapdoor function from pNE, which may be of independent interest. Our scheme uses the lossy trapdoor function framework of Peikert and Waters, which we generalize to the case of (k − 1)-of-k-correlated input distributions.
Resumo:
Responding to the global and unprecedented challenge of capacity building for twenty-first century life, this book is a practical guide for tertiary education institutions to quickly and effectively renew the curriculum towards education for sustainable development. The book begins by exploring why curriculum change has been so slow. It then describes a model for rapid curriculum renewal, highlighting the important roles of setting timeframes, formal and informal leadership, and key components and action strategies. The second part of the book provides detailed coverage of six core elements that have been trialled and peer reviewed by institutions around the world: - raising awareness among staff and students - mapping graduate attributes - auditing the curriculum - developing niche degrees, flagship courses and fully integrated programs - engaging and catalysing community and student markets - integrating curriculum with green campus operations. With input from more than seventy academics and grounded in engineering education experiences, this book will provide academic staff with tools and insights to rapidly align program offerings with the needs of present and future generations of students.
Resumo:
Motion control systems have a significant impact on the performance of ships and marine structures allowing them to perform tasks in severe sea states and during long periods of time. Ships are designed to operate with adequate reliability and economy, and in order to achieve this, it is essential to control the motion. For each type of ship and operation performed (transit, landing a helicopter, fishing, deploying and recovering loads, etc.), there are not only desired motion settings, but also limits on the acceptable (undesired) motion induced by the environment. The task of a ship motion control system is therefore to act on the ship so it follows the desired motion as closely as possible. This book provides an introduction to the field of ship motion control by studying the control system designs for course-keeping autopilots with rudder roll stabilisation and integrated rudder-fin roll stabilisation. These particular designs provide a good overview of the difficulties encountered by designers of ship motion control systems and, therefore, serve well as an example driven introduction to the field. The idea of combining the control design of autopilots with that of fin roll stabilisers, and the idea of using rudder induced roll motion as a sole source of roll stabilisation seems to have emerged in the late 1960s. Since that time, these control designs have been the subject of continuous and ongoing research. This ongoing interest is a consequence of the significant bearing that the control strategy has on the performance and the issues associated with control system design. The challenges of these designs lie in devising a control strategy to address the following issues: underactuation, disturbance rejection with a non minimum phase system, input and output constraints, model uncertainty, and large unmeasured stochastic disturbances. To date, the majority of the work reported in the literature has focused strongly on some of the design issues whereas the remaining issues have been addressed using ad hoc approaches. This has provided an additional motivation for revisiting these control designs and looking at the benefits of applying a contemporary design framework, which can potentially address the majority of the design issues.
Resumo:
Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc...
Resumo:
In this paper, we identify two types of injustice as antecedents of abusive supervision and ultimately of subordinate psychological distress and insomnia. We examine distributive justice (an individual's evaluation of their input to output ratio compared to relevant others) and interactional injustice (the quality of interpersonal treatment received when procedures are implemented). Using a sample of Filipinos in a variety of occupations, we identify two types of injustice experienced by supervisors as stressors that provoke them to display abusive supervision to their subordinates. We examine two consequences of abusive supervision - subordinate psychological distress and insomnia. In addition, we identify two moderators of these relationships, namely, supervisor distress and subordinate self-esteem. We collected survey data from multiple sources including subordinates, their supervisors, and their partners. Data were obtained from 175 matched supervisor-subordinate dyads over a 6-month period, with subordinates' partners providing ratings of insomnia. Results of structural equation modelling analyses provided support for an indirect effects model in which supervisors' experience of unfair treatment cascades down the organization, resulting in subordinate psychological distress and, ultimately in their insomnia. In addition, results partially supported the proposed moderated relationships in the cascading model. © 2010 Taylor & Francis.
Resumo:
Port-Hamiltonian Systems (PHS) have a particular form that incorporates explicitly a function of the total energy in the system (energy function) and also other functions that describe structure of the system in terms of energy distribution. For PHS, the product of the input and output variables gives the rate of energy change. This type of systems have the property that under certain conditions on the energy function, the system is passive; and thus, stable. Therefore, if one can design a controller such that the closed-loop system retains - or takes - a PHS form, such closed-loop system will inherit the properties of passivity and stability. In this paper, the classical model of marine craft is put into a PHS form. It is shown that models used for positioning control do not have a PHS form due to a kinematic transformation, but a control design can be done such that the closed-loop system takes a PHS form. It is further shown how integral action can be added and how the PHS-form can be exploited to provide a procedure for control design that ensures passivity and thus stability.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is presented. The model consists of particle and power balance equations taking into account power loss on the dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation. The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the electron energy distribution, the electron temperature, the electron and ion number densities, and the dust charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can take up a significant portion of the input power, often even exceeding the loss to the wall.
Resumo:
The design and development of process-aware information systems is often supported by specifying requirements as business process models. Although this approach is generally accepted as an effective strategy, it remains a fundamental challenge to adequately validate these models given the diverging skill set of domain experts and system analysts. As domain experts often do not feel confident in judging the correctness and completeness of process models that system analysts create, the validation often has to regress to a discourse using natural language. In order to support such a discourse appropriately, so-called verbalization techniques have been defined for different types of conceptual models. However, there is currently no sophisticated technique available that is capable of generating natural-looking text from process models. In this paper, we address this research gap and propose a technique for generating natural language texts from business process models. A comparison with manually created process descriptions demonstrates that the generated texts are superior in terms of completeness, structure, and linguistic complexity. An evaluation with users further demonstrates that the texts are very understandable and effectively allow the reader to infer the process model semantics. Hence, the generated texts represent a useful input for process model validation.
Resumo:
Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.
Resumo:
We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model’s flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual data from a camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of view. Using established algorithms for calculating perceptual speed from the apparent rate of visual change over time, we generate raw dead reckoning information which loses spatial fidelity over time due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an indoor square maze used in rodent experiments and an outdoor arena more than two orders of magnitude larger than the indoor maze. Together these results bridge for the first time the gap between higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world studies in rodent-sized arenas and beyond.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
Background Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep’s probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction. Result We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram. Conclusions We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.