207 resultados para Indoor air quality


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scores of well-researched individual papers and posters specifically or indirectly addressing the occurrence, measurement or exposure impacts of chemicals in buildings were presented at 2012 Healthy Buildings Conference. Many of these presentations offered advances in sampling and characterisation of chemical pollutants while others extended the frontiers of knowledge on the emission, adsorption, risk, fate and compositional levels of chemicals in indoor and outdoor microenvironments. Several modelled or monitored indoor chemistry, including processes that generated secondary pollutants. This article provides an overview of the state of knowledge on healthy buildings based on papers presented in chemistry sessions at Healthy Buildings 2012 (HB2012) Conference. It also suggests future directions in healthy buildings research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research investigated the microbial air quality of flooded houses in Brisbane suburbs following the January 2011 flood event. Flood waters can carry and spread human pathogenic bacteria, and these organisms can be dispersed into residential air by aerosolisation. This study found that the bacterial load was significantly different for indoor and outdoor areas of flood affected houses, but no significant differences were observed between flooded and non-flooded houses. This could be due to the rapid clean-up of flooded houses following the event. Molecular methods were used to identify and characterise staphylococcal species in residential air of flooded and non-flooded houses. A major finding was the diverse population of airborne staphylococci as well as the high rate of methicillin-resistance in these strains. By determining the genetic relatedness of residential air sourced staphylococci, a potential source for pathogenic strains can be identified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In January 2011, Brisbane, Australia, experienced a major river flooding event. We aimed to investigate its effects on air quality and assess the role of prompt cleaning activities in reducing the airborne exposure risk. A comprehensive, multi-parameter indoor and outdoor measurement campaign was conducted in 41 residential houses, 2 and 6 months after the flood. The median indoor air concentrations of supermicrometer particle number (PN), PM10, fungi and bacteria 2 months after the flood were comparable to those previously measured in Brisbane. These were 2.88 p cm-3, 15 µg m-3, 804 cfu m-3 and 177 cfu m-3 for flood-affected houses (AFH), and 2.74 p cm-3, 15 µg m-3, 547 cfu m-3 and 167 cfu m-3 for non-affected houses (NFH), respectively. The I/O (indoor/outdoor) ratios of these pollutants were 1.08, 1.38, 0.74 and 1.76 for AFH and 1.03, 1.32, 0.83 and 2.17 for NFH, respectively. The average of total elements (together with transition metals) in indoor dust was 2296 ± 1328 µg m-2 for AFH and 1454 ± 678 µg m-2 for NFH, respectively. In general, the differences between AFH and NFH were not statistically significant, implying the absence of a measureable effect on air quality from the flood. We postulate that this was due to the very swift and effective cleaning of the flooded houses by 60,000 volunteers. Among the various cleaning methods, the use of both detergent and bleach was the most efficient at controlling indoor bacteria. All cleaning methods were equally effective for indoor fungi. This study provides quantitative evidence of the significant impact of immediate post-flood cleaning on mitigating the effects of flooding on indoor bioaerosol contamination and other pollutants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Outdoor air pollution is a killer. A recent report from the World Health Organization estimated that 3.7 million deaths per year are due to outdoor air pollution. Most of these deaths are in low and middle income countries, with China being the country that often springs to mind. However, Australia still has a relatively big air pollution problem with an estimated 3,000 deaths per year. Traffic pollution is the major contributor to urban air pollution in Australia. Extreme events, such dust storms, bushfires and the recent coal fire in Morwell, dramatically increase pollution levels (for days or weeks) and are also very hazardous to health. Australian governments in the last 30 years have committed to improving air quality, and policies have been discussed and implemented with the aim of creating cleaner air. One key policy measure is the National Environment Protection Measures for air quality. These set standards for six important outdoor pollutants. Their key goal is to create “ambient air quality that allows for the adequate protection of human health and wellbeing”.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Air pollution is a persistent problem in urban areas, and traffic emissions are a major cause of poor air quality. Policies to curb pollution levels often involve raising the price of using private vehicles, for example, congestion charges. We were interested in whether higher fuel prices were associated with decreased air pollution levels. We examined an association between diesel and petrol prices and four traffic-related pollutants in Brisbane from 2010 to 2013. We used a regression model and examined pollution levels up to 16 days after the price change. Higher diesel prices were associated with statistically significant short-term reductions in carbon monoxide and nitrogen oxides. Changes in petrol prices had no impact on air pollution. Raising diesel taxes in Australia could be justified as a public health measure. As raising taxes is politically unpopular, an alternative political approach would be to remove schemes that put a downward pressure on fuel prices, such as industry subsidies and shopping vouchers that give fuel discounts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives To quantify the mortality burden attributed to urban outdoor air pollution in South Africa in 2000. Design The study followed comparative risk assessment (CRA) methodology developed by the World Heath Organization (WHO). In most urban areas, annual mean concentrations of particulate matter (PM) with diameters less than 10 μum (PM10) from monitoring network data and PM with diameters less than 2.5 μm (PM2.5) derived using a ratio method were weighted according to population size. PM10 and PM2.5 data from air-quality assessment studies in areas not covered by the network were also included. Population-attributable fractions calculated using risk coefficients presented in the WHO study were weighted by the proportion of the total population (33%) in urban environments, and applied to revised estimates of deaths and years of life lost (YLLs) for South Africa in 2000. Setting South Africa. Subjects Children under 5 years and adults 30 years and older. Outcome measures Mortality and YLLs from lung cancer and cardiopulmonary disease in adults (30 years and older), and from acute respiratory infections (ARIs) in children aged 0 - 4 years. Results Outdoor air pollution in urban areas in South Africa was estimated to cause 3.7% of the national mortality from cardiopulmonary disease and 5.1% of mortality attributable to cancers of the trachea, bronchus and lung in adults aged 30 years and older, and 1.1% of mortality from ARIs in children under 5 years of age. This amounts to 4 637 or 0.9% (95% uncertainty interval 0.3 - 1.5%) of all deaths and about 42 000 YLLs, or 0.4% (95% uncertainty interval 0.1 - 0.7%) of all YLLs in persons in South Africa in 2000. Conclusion Urban air pollution has under-recognised public health impacts in South Africa. Fossil fuel combustion emissions and traffic-related air pollution remain key targets for public health in South Africa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Elevated levels of fungi in indoor environments have been linked with mould/moisture damage in building structures. However, there is a lack of information about “normal” concentrations and flora as well as guidelines of viable fungi in the school environment in different climatic conditions. We have reviewed existing guidelines for indoor fungi and the current knowledge of the concentrations and flora of viable fungi in different climatic areas, the impact of the local factors on concentrations and flora of viable fungi in school environments. Meta-regression was performed to estimate the average behaviour for each analysis of interest, showing wide variation in the mean concentrations in outdoor and indoor school environments (range: 101-103 cfu/m3). These concentrations were significantly higher for both outdoors and indoors in the moderate than in the continental climatic area, showing that the climatic condition was a determinant for the concentrations of airborne viable fungi. The most common fungal species both in the moderate and continental area were Cladosporium spp. and Penicillium spp. The suggested few quantitative guidelines for indoor air viable fungi for school buildings are much lower than for residential areas. This review provides a synthesis, which can be used to guide the interpretation of the fungi measurements results and help to find indications of mould/moisture in school building structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Sensitive Aunt Provotype was designed as part of Indoor Climate, a three-year research study of participatory design and user-driven innovation. It resulted from collaboration between two universities and five industry partners. Indoor Climate sought to understand experiences of comfort in domestic, business and institutional environments. This involved a literature review on the meaning of comfort, an ethnographic study of indoor environments, a provotyping process designed to provoke debate, and the design development of new products. A provotype is a provocative prototype. The title of the work Sensitive Aunt was derived from an analogy by one of the project partners and the colours emitted by the device represent the temperature, light intensity and air quality of the environment in which it is placed. In addition, the LED screen suggests actions to improve the indoor climate. The sensitive aunt provotype was designed to provoke conversation around different conceptions of a new product or service from the perspectives of manufacturers and design users. While both speculative design and provotypes inspire debate, speculative design focuses on the normative protocols of design industries while provotypes trigger discussion with the industry partners. Critically challenging ideas such as 21 degrees is the temperature in which people should be comfortable, provotypes combine participation and provocation and open up design to issues of refocus on usability and values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is an ongoing debate about the reasons for and factors contributing to healthcare-associated infection (HAI). Different solutions have been proposed over time to control the spread of HAI, with more focus on hand hygiene than on other aspects such as preventing the aerial dissemination of bacteria. Yet, it emerges that there is a need for a more pluralistic approach to infection control; one that reflects the complexity of the systems associated with HAI and involves multidisciplinary teams including hospital doctors, infection control nurses, microbiologists, architects, and engineers with expertise in building design and facilities management. This study reviews the knowledge base on the role that environmental contamination plays in the transmission of HAI, with the aim of raising awareness regarding infection control issues that are frequently overlooked. From the discussion presented in the study, it is clear that many unknowns persist regarding aerial dissemination of bacteria, and its control via cleaning and disinfection of the clinical environment. There is a paucity of good-quality epidemiological data, making it difficult for healthcare authorities to develop evidence-based policies. Consequently, there is a strong need for carefully designed studies to determine the impact of environmental contamination on the spread of HAI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are three distinct categories of air environment to be considered in this chapter. These are as follows: (1) The “ambient” or general outdoors atmosphere to which the members of the population are exposed when they venture out of their homes or offices in industrial, urban or rural environments. (2) Indoor air environments, which occur in buildings such as homes, schools, restaurants, public hospitals and office buildings. This category does not cover factories or workplaces which are otherwise subjected to the provisions of various occupational health standards. (3) Workplace atmospheres, which occur in a variety of industries or factories and for which there are numerous atmospheric concentration limits (or exposure standards) promulgated by appropriate bodies or organisations. Since 2009 setting concentration limits for atmospheric contaminants has been administered by Safe Work Australia. A fourth category of air environment which falls outside this chapter is that which is related to upper atmospheric research, global atmospheric effects and concomitant areas of inquiry and/or debate. Such areas include “greenhouse” gas emissions, ozone depletion, and related matters of atmospheric chemistry and physics. This category is not referred to again in this chapter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Exposure to bioaerosols in indoor environments has been linked to various adverse health effects, such as airway disorders and upper respiratory tract symptoms. The aim of this study was to assess exposure to bioaerosols in the school environment in Brisbane, Australia. Methods: Culturable fungi and endotoxin measurements were conducted in six schools between October 2010 and May 2011. Culturable fungi (2 indoor air and 1-2 outdoor air samples per school) were assessed using a Biotest RCS High Flow Air Sampler, with a flow rate of either 50L/min or 20L/min. A rose pengar agar was used for recovery, which was incubated prior to counting and partial identification. Endotoxins were sampled (8h, 2L/min) using SKC glass fibre filters (4 indoor air samples per school) and analysed using an endpoint chromogenic LAL assay. Results: The arithmetic mean for fungi concentration in indoor and outdoor air was 710 cfu/m3(125- 1900 cfu/m3) and 524 cfu/m3 (140-1250 cfu/m3), respectively. The most frequently isolated fungal genus from the outdoor air was Cladosporium (over 40 %), followed by isolated Penicillium (21%) and Aspergillus (12%). The percent of Penicillium, Cladosporium and Aspergillus in indoor air samples was 32%, 32% and 8%, respectively. The aritmetic mean of endotoxin concentration was 0.59 EU/m3 (0-2,2 EU/m3). Discussion: The results of the current study are in agreement with previously reported studies, in that airborne fungi and endotoxin concentrations varied extensively, and were mostly dependent on climatic conditions. In addition, the indoor air mycoflora largely reflected the fungal flora present in the outdoor air, with Cladosporium being the most common in both outdoor and indoor (with Penicillium) air. In indoor air, unusually high endotoxin levels, over 1 EU/m3, were detected at 2 schools. Although these schools were not affected by the recent Brisbane floods, persistent rain prior to and during the study perios could explain the results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Long term exposure to organic pollutants, both inside and outside school buildings may affect children’s health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.