248 resultados para Imaging camera
Resumo:
Person re-identification involves recognising individuals in different locations across a network of cameras and is a challenging task due to a large number of varying factors such as pose (both subject and camera) and ambient lighting conditions. Existing databases do not adequately capture these variations, making evaluations of proposed techniques difficult. In this paper, we present a new challenging multi-camera surveillance database designed for the task of person re-identification. This database consists of 150 unscripted sequences of subjects travelling in a building environment though up to eight camera views, appearing from various angles and in varying illumination conditions. A flexible XML-based evaluation protocol is provided to allow a highly configurable evaluation setup, enabling a variety of scenarios relating to pose and lighting conditions to be evaluated. A baseline person re-identification system consisting of colour, height and texture models is demonstrated on this database.
Resumo:
Purpose The emergence of digital technologies has created enthusiasm for their application to student learning. An evolving issue in medical imaging is how these technologies might be implemented within programs. Method A review of the literature was performed to explore applications and issues of educational technology in medical imaging Results There are a range of applications for educational technology within medical imaging education however limitations do exist. Learners must be supported by the development of skills to utilize education technologies. The digital picture archival and communication environment presents an ideal opportunity to enhance student learning through interaction and engagement with images. Implementation of education technologies to support student placement activities is an area for future development provided equity of access is addressed. Conclusion Education technologies have specific application to medical imaging education as part of a blended curriculum.
Resumo:
Wound healing involves a complex series of biochemical events and has traditionally been managed with 'low tech' dressings and bandages. The concept that diagnostic and theranostic sensors can complement wound management is rapidly growing in popularity as there is tremendous potential to apply this technology to both acute and chronic wounds. Benefits in sensing the wound environment include reduction of hospitalization time, prevention of amputations and better understanding of the processes which impair healing. This review discusses the state-of-the-art in detection of markers associated with wound healing and infection, utilizing devices imbedded within dressings or as point-of-care techniques to allow for continual or rapid wound assessment and monitoring. Approaches include using biological or chemical sensors of wound exudates and volatiles to directly or indirectly detect bacteria, monitor pH, temperature, oxygen and enzymes. Spectroscopic and imaging techniques are also reviewed as advanced wound monitoring techniques. The review concludes with a discussion of the limitations of and future directions for this field.
Resumo:
Background: Right-to-left shunting via a patent foramen ovale (PFO) has a recognized association with embolic events in younger patients. The use of agitated saline contrast imaging (ASCi) for detecting atrial shunting is well documented, however optimal technique is not well described. The purpose of this study is to assess the efficacy and safety of ASCi via TTE for assessment of right-to-left atrial communication in a large cohort of patients. Method: A retrospective review was undertaken of 1162 consecutive transthoracic (TTE) ASCi studies, of which 195 had also undergone clinically indicated transesophageal (TEE) echo. ASCi shunt results were compared with color flow imaging (CFI) and the role of provocative maneuvers (PM) assessed. Results: 403 TTE studies (35%) had paradoxical shunting seen during ASCi. Of these, 48% were positive with PM only. There was strong agreement between TTE ASCi and reported TEE findings (99% sensitivity, 85% specificity), with six false positive and two false negative results. In hindsight, the latter were likely due to suboptimal right atrial opacification, and the former due to transpulmonary shunting. TTE CFI was found to be insensitive (22%) for the detection of a PFO compared with TTE ASCi. Conclusions: TTE ASCi is minimally invasive and highly accurate for the detection of right-to-left atrial communication when PM are used. TTE CFI was found to be insensitive for PFO screening. It is recommended that TTE ASCi should be considered the initial diagnostic tool for the detection of PFO in clinical practice. A dedicated protocol should be followed to ensure adequate agitated saline contrast delivery and performance of provocative maneuvers.
Resumo:
The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions. (C) 1993 Wiley-Liss, Inc.
Resumo:
HRTEM has been used to examine illite/smectite from the Mancos shale, rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa formation. Thin specimens were prepared by ion milling, ultra-microtome sectioning and/or grain dispersal on a porous carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method of HRTEM imaging of expanded smectite, d(001) 16 A which could then be distinguished from unexpanded illite, d(001) 10 A. Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed 26 A periodicity. These data support XRD studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10 A and 14 A basal spacings corresponding with collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to > five layers. -J.M.H.
Resumo:
As an artist my primary interest is in the abstract, that is in images of the imageless. I am curious about the emergence of pictorial significance and content from this unknowable space. To speak of the significance of an imageless image is also to speak of its affect. I aim to explore this both theoretically and practically. Theoretically I will explore affect through the late work of Lyotard and his notion of the affect-phrase. This is an under-examined aspect of Lyotard and demarcates a valuable way to look at the origins, impact and ramifications of affect for art. Practically I will apply these understandings to the development of my own creative work which includes both painting and digital work. My studio practice moves towards exploring the unfamiliar through the powerful and restless silence of affect.In this intense space each work or body of work 'leaks' into the next occasioning a sense of borderlessness, or of uncertainty. This interpenetration and co-mingling of conceptual and material terrains combines to present temporal and spatial slippages evident within the works themselves and their making, but it is also evident in bodies of work across the chronology of their making. Through a mapping of my own painting and digital arts practice and the utilisation of Lyotard’s notion of the affect -phrase I aim to describe the action of this ‘charged emptiness’ on creativity and explore and explain its significance on that we call image and its animation of what we call critical discourse.
Resumo:
Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot pressed B13C2 sample shows a high density of variable width twins normal to (10-11). Subtle shifts or offsets of lattice fringes along the twin plane and normal to (10 5) were also observed. A B4C powder showed little evidence of stacking disorder in crystalline regions.
'Going live' : establishing the creative attributes of the live multi-camera television professional
Resumo:
In my capacity as a television professional and teacher specialising in multi-camera live television production for over 40 years, I was drawn to the conclusion that opaque or inadequately formed understandings of how creativity applies to the field of live television, have impeded the development of pedagogies suitable to the teaching of live television in universities. In the pursuit of this hypothesis, the thesis shows that television degrees were born out of film studies degrees, where intellectual creativity was aligned to single camera production, and the 'creative roles' of producers, directors and scriptwriters. At the same time, multi-camera live television production was subsumed under the 'mass communication' banner, leading to an understanding that roles other than producer and director are simply technical, and bereft of creative intent or acumen. The thesis goes on to show that this attitude to other television production personnel, for example, the vision mixer, videotape operator and camera operator, relegates their roles to that of 'button pusher'. This has resulted in university teaching models with inappropriate resources and unsuitable teaching practices. As a result, the industry is struggling to find people with the skills to fill the demands of the multi-camera live television sector. In specific terms the central hypothesis is pursued through the following sequenced approach. Firstly, the thesis sets out to outline the problems, and traces the origins of the misconceptions that hold with the notion that intellectual creativity does not exist in live multi-camera television. Secondly, this more adequately conceptualised rendition, of the origins particular to the misconceptions of live television and creativity, is then anchored to the field of examination by presentation of the foundations of the roles involved in making live television programs, using multicamera production techniques. Thirdly, this more nuanced rendition of the field sets the stage for a thorough analysis of education and training in the industry, and teaching models at Australian universities. The findings clearly establish that the pedagogical models are aimed at single camera production, a position that deemphasises the creative aspects of multi-camera live television production. Informed by an examination of theories of learning, qualitative interviews, professional reflective practice and observations, the roles of four multi-camera live production crewmembers (camera operator, vision mixer, EVS/videotape operator and director's assistant), demonstrate the existence of intellectual creativity during live production. Finally, supported by the theories of learning, and the development and explication of a successful teaching model, a new approach to teaching students how to work in live television is proposed and substantiated.
Resumo:
The current gold standard for the design of orthopaedic implants is 3D models of long bones obtained using computed tomography (CT). However, high-resolution CT imaging involves high radiation exposure, which limits its use in healthy human volunteers. Magnetic resonance imaging (MRI) is an attractive alternative for the scanning of healthy human volunteers for research purposes. Current limitations of MRI include difficulties of tissue segmentation within joints and long scanning times. In this work, we explore the possibility of overcoming these limitations through the use of MRI scanners operating at a higher field strength. We quantitatively compare the quality of anatomical MR images of long bones obtained at 1.5 T and 3 T and optimise the scanning protocol of 3 T MRI. FLASH images of the right leg of five human volunteers acquired at 1.5 T and 3 T were compared in terms of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The comparison showed a relatively high CNR and SNR at 3 T for most regions of the femur and tibia, with the exception of the distal diaphyseal region of the femur and the mid diaphyseal region of the tibia. This was accompanied by an ~65% increase in the longitudinal spin relaxation time (T1) of the muscle at 3 T compared to 1.5 T. The results suggest that MRI at 3 T may be able to enhance the segmentability and potentially improve the accuracy of 3D anatomical models of long bones, compared to 1.5 T. We discuss how the total imaging times at 3 T can be kept short while maximising the CNR and SNR of the images obtained.
Resumo:
The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.
Resumo:
Background: Hyperpolarised helium MRI (He3 MRI) is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT) a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT. Methods: Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated. Results: EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques. Conclusion: EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI.
Resumo:
Background: Measurement accuracy is critical for biomechanical gait assessment. Very few studies have determined the accuracy of common clinical rearfoot variables between cameras with different collection frequencies. Research question: What is the measurement error for common rearfoot gait parameters when using a standard 30Hz digital camera compared to 100Hz camera? Type of study: Descriptive. Methods: 100 footfalls were recorded from 10 subjects ( 10 footfalls per subject) running on a treadmill at 2.68m/s. A high-speed digital timer, accurate within 1ms served as an external reference. Markers were placed along the vertical axis of the heel counter and the long axis of the shank. 2D coordinates for the four markers were determined from heel strike to heel lift. Variables of interest included time of heel strike (THS), time of heel lift (THL), time to maximum eversion (TMax), and maximum rearfoot eversion angle (EvMax). Results: THS difference was 29.77ms (+/- 8.77), THL difference was 35.64ms (+/- 6.85), and TMax difference was 16.50ms (+/- 2.54). These temporal values represent a difference equal to 11.9%, 14.3%, and 6.6% of the stance phase of running gait, respectively. EvMax difference was 1.02 degrees (+/- 0.46). Conclusions: A 30Hz camera is accurate, compared to a high-frequency camera, in determining TMax and EvMax during a clinical gait analysis. However, relatively large differences, in excess of 12% of the stance phase of gait, for THS and THL variables were measured.
Resumo:
The building sector is the dominant consumer of energy and therefore a major contributor to anthropomorphic climate change. The rapid generation of photorealistic, 3D environment models with incorporated surface temperature data has the potential to improve thermographic monitoring of building energy efficiency. In pursuit of this goal, we propose a system which combines a range sensor with a thermal-infrared camera. Our proposed system can generate dense 3D models of environments with both appearance and temperature information, and is the first such system to be developed using a low-cost RGB-D camera. The proposed pipeline processes depth maps successively, forming an ongoing pose estimate of the depth camera and optimizing a voxel occupancy map. Voxels are assigned 4 channels representing estimates of their true RGB and thermal-infrared intensity values. Poses corresponding to each RGB and thermal-infrared image are estimated through a combination of timestamp-based interpolation and a pre-determined knowledge of the extrinsic calibration of the system. Raycasting is then used to color the voxels to represent both visual appearance using RGB, and an estimate of the surface temperature. The output of the system is a dense 3D model which can simultaneously represent both RGB and thermal-infrared data using one of two alternative representation schemes. Experimental results demonstrate that the system is capable of accurately mapping difficult environments, even in complete darkness.