631 resultados para Hybrid methods
Resumo:
Several protocols for isolation of mycobacteria from water exist, but there is no established standard method. This study compared methods of processing potable water samples for the isolation of Mycobacterium avium and Mycobacterium intracellulare using spiked sterilized water and tap water decontaminated using 0.005% cetylpyridinium chloride (CPC). Samples were concentrated by centrifugation or filtration and inoculated onto Middlebrook 7H10 and 7H11 plates and Lowenstein-Jensen slants and into mycobacterial growth indicator tubes with or without polymyxin, azlocillin, nalidixic acid, trimethoprim, and amphotericin B. The solid media were incubated at 32°C, at 35°C, and at 35°C with CO2 and read weekly. The results suggest that filtration of water for the isolation of mycobacteria is a more sensitive method for concentration than centrifugation. The addition of sodium thiosulfate may not be necessary and may reduce the yield. Middlebrook M7H10 and 7H11 were equally sensitive culture media. CPC decontamination, while effective for reducing growth of contaminants, also significantly reduces mycobacterial numbers. There was no difference at 3 weeks between the different incubation temperatures.
Resumo:
This article examines contemporary social work and why it is under serious threat, ideologically and economically, in a rapidly changing world that no longer highly values its social mandate, methods, and outcomes. Within this hostile environment we investigate the low salaries and high student debt that beginning social workers experience, which might otherwise drive them into unions. Instead, the profession resists unionization, preferring to remain focused on its ideals rather than the disquieting marketplace realities. We then examine the general elements of a hybrid union model that can assist social workers to organize and thus arrest their long-standing professional and fiscal decline.
Resumo:
This article explores two matrix methods to induce the ``shades of meaning" (SoM) of a word. A matrix representation of a word is computed from a corpus of traces based on the given word. Non-negative Matrix Factorisation (NMF) and Singular Value Decomposition (SVD) compute a set of vectors corresponding to a potential shade of meaning. The two methods were evaluated based on loss of conditional entropy with respect to two sets of manually tagged data. One set reflects concepts generally appearing in text, and the second set comprises words used for investigations into word sense disambiguation. Results show that for NMF consistently outperforms SVD for inducing both SoM of general concepts as well as word senses. The problem of inducing the shades of meaning of a word is more subtle than that of word sense induction and hence relevant to thematic analysis of opinion where nuances of opinion can arise.
Resumo:
Crucial to enhancing the status and quality of games teaching in schools is a developed understanding of the teaching strategies adopted by practitioners. In this paper, we will demonstrate that contemporary games‟ teaching is a product of individual, task and environmental constraints (Newell, 1986). More specifically, we will show that current pedagogy in the U.K., Australia and the United States is strongly influenced by historical, socio-cultural environmental and political constraints. In summary, we will aim to answer the question „why do teachers teach games the way they do.‟ In answering this question, we conclude that teacher educators, who are trying to influence pedagogical practice, must understand these potential constraints and provide appropriate pre-service experiences to give future physical education teachers the knowledge, confidence and ability to adopt a range of teaching styles when they become fully fledged teachers. Essential to this process is the need to enable future practitioners to base their pedagogical practice on a sound understanding of contemporary learning theories of skill acquisition.
Resumo:
This paper proposes a novel Hybrid Clustering approach for XML documents (HCX) that first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. The empirical analysis reveals that the proposed method is scalable and accurate.
Resumo:
This thesis proposes that contemporary printmaking, at its most significant, marks the present through reconstructing pasts and anticipating futures. It argues this through examples in the field, occurring in contexts beyond the Euramerican (Europe and North America). The arguments revolve around how the practice of a number of significant artists in Japan, Australia and Thailand has generated conceptual and formal innovations in printmaking that transcend local histories and conventions, whilst paradoxically, also building upon them and creating new meanings. The arguments do not portray the relations between contemporary and traditional art as necessarily antagonistic but rather, as productively dialectical. Furthermore, the case studies demonstrate that, in the 1980s and 1990s particularly, the studio practice of these printmakers was informed by other visual arts disciplines and reflected postmodern concerns. Departures from convention witnessed in these countries within the Asia-Pacific region shifted the field of the print into a heterogeneous and hybrid realm. The practitioners concerned (especially in Thailand) produced work that was more readily equated with performance and installation art than with printmaking per se. In Japan, the incursion of photography interrupted the decorative cast of printmaking and delivered it from a straightforward, craft-based aesthetic. In Australia, fixed notions of national identity were challenged by print practitioners through deliberate cultural rapprochements and technical contradictions (speaking across old and new languages).However time-honoured print methods were not jettisoned by any case study artists. Their re-alignment of the fundamental attributes of printmaking, in line with materialist formalism, is a core consideration of my arguments. The artists selected for in-depth analysis from these three countries are all innovators whose geographical circumstances and creative praxis drew on local traditions whilst absorbing international trends. In their radical revisionism, they acknowledged the specificity of history and place, conditions of contingency and forces of globalisation. The transformational nature of their work during the late twentieth century connects it to the postmodern ethos and to a broader artistic and cultural nexus than has hitherto been recognised in literature on the print. Emerging from former guild-based practices, they ambitiously conceived their work to be part of a continually evolving visual arts vocabulary. I argue in this thesis that artists from the Asia-Pacific region have historically broken with the hermetic and Euramerican focus that has generally characterised the field. Inadequate documentation and access to print activity outside the dominant centres of critical discourse imply that readings of postmodernism have been too limited in their scope of inquiry. Other locations offer complexities of artistic practice where re-alignments of customary boundaries are often the norm. By addressing innovative activity in Japan, Australia and Thailand, this thesis exposes the need for a more inclusive theoretical framework and wider global reach than currently exists for ‘printmaking’.
Resumo:
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
Resumo:
In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.
Resumo:
In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.
Resumo:
One of the new challenges in aeronautics is combining and accounting for multiple disciplines while considering uncertainties or variability in the design parameters or operating conditions. This paper describes a methodology for robust multidisciplinary design optimisation when there is uncertainty in the operating conditions. The methodology, which is based on canonical evolution algorithms, is enhanced by its coupling with an uncertainty analysis technique. The paper illustrates the use of this methodology on two practical test cases related to Unmanned Aerial Systems (UAS). These are the ideal candidates due to the multi-physics involved and the variability of missions to be performed. Results obtained from the optimisation show that the method is effective to find useful Pareto non-dominated solutions and demonstrate the use of robust design techniques.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
Migraine is a painful disorder for which the etiology remains obscure. Diagnosis is largely based on International Headache Society criteria. However, no feature occurs in all patients who meet these criteria, and no single symptom is required for diagnosis. Consequently, this definition may not accurately reflect the phenotypic heterogeneity or genetic basis of the disorder. Such phenotypic uncertainty is typical for complex genetic disorders and has encouraged interest in multivariate statistical methods for classifying disease phenotypes. We applied three popular statistical phenotyping methods—latent class analysis, grade of membership and grade of membership “fuzzy” clustering (Fanny)—to migraine symptom data, and compared heritability and genome-wide linkage results obtained using each approach. Our results demonstrate that different methodologies produce different clustering structures and non-negligible differences in subsequent analyses. We therefore urge caution in the use of any single approach and suggest that multiple phenotyping methods be used.
Resumo:
Research on analogies in science education has focussed on student interpretation of teacher and textbook analogies, psychological aspects of learning with analogies and structured approaches for teaching with analogies. Few studies have investigated how analogies might be pivotal in students’ growing participation in chemical discourse. To study analogies in this way requires a sociocultural perspective on learning that focuses on ways in which language, signs, symbols and practices mediate participation in chemical discourse. This study reports research findings from a teacher-research study of two analogy-writing activities in a chemistry class. The study began with a theoretical model, Third Space, which informed analyses and interpretation of data. Third Space was operationalized into two sub-constructs called Dialogical Interactions and Hybrid Discourses. The aims of this study were to investigate sociocultural aspects of learning chemistry with analogies in order to identify classroom activities where students generate Dialogical Interactions and Hybrid Discourses, and to refine the operationalization of Third Space. These aims were addressed through three research questions. The research questions were studied through an instrumental case study design. The study was conducted in my Year 11 chemistry class at City State High School for the duration of one Semester. Data were generated through a range of data collection methods and analysed through discourse analysis using the Dialogical Interactions and Hybrid Discourse sub-constructs as coding categories. Results indicated that student interactions differed between analogical activities and mathematical problem-solving activities. Specifically, students drew on discourses other than school chemical discourse to construct analogies and their growing participation in chemical discourse was tracked using the Third Space model as an interpretive lens. Results of this study led to modification of the theoretical model adopted at the beginning of the study to a new model called Merged Discourse. Merged Discourse represents the mutual relationship that formed during analogical activities between the Analog Discourse and the Target Discourse. This model can be used for interpreting and analysing classroom discourse centred on analogical activities from sociocultural perspectives. That is, it can be used to code classroom discourse to reveal students’ growing participation with chemical (or scientific) discourse consistent with sociocultural perspectives on learning.
Resumo:
This study, in its exploration of the attached play scripts and their method of development, evaluates the forms, strategies, and methods of an organised model of formalised playwriting. Through the examination, reflection and reaction to a perceived crisis in playwriting in the Australian theatre sector, the notion of Industrial Playwriting is arrived at: a practice whereby plays are designed and constructed, and where the process of writing becomes central to the efficient creation of new work and the improvement of the writer’s skill and knowledge base. Using a practice-led methodology and action research the study examines a system of play construction appropriate to and addressing the challenges of the contemporary Australian theatre sector. Specifically, using the action research methodology known as design-based research a conceptual framework was constructed to form the basis of the notion of Industrial Playwriting. From this two plays were constructed using a case study method and the process recorded and used to create a practical, step-by-step system of Industrial Playwriting. In the creative practice of manufacturing a single authored play, and then a group-devised play, Industrial Playwriting was tested and found to also offer a valid alternative approach to playwriting in the training of new and even emerging playwrights. Finally, it offered insight into how Industrial Playwriting could be used to greatly facilitate theatre companies’ ongoing need to have access to new writers and new Australian works, and how it might form the basis of a cost effective writer development model. This study of the methods of formalised writing as a means to confront some of the challenges of the Australian theatre sector, the practice of playwriting and the history associated with it, makes an original and important contribution to contemporary playwriting practice.
Resumo:
The results of a numerical investigation into the errors for least squares estimates of function gradients are presented. The underlying algorithm is obtained by constructing a least squares problem using a truncated Taylor expansion. An error bound associated with this method contains in its numerator terms related to the Taylor series remainder, while its denominator contains the smallest singular value of the least squares matrix. Perhaps for this reason the error bounds are often found to be pessimistic by several orders of magnitude. The circumstance under which these poor estimates arise is elucidated and an empirical correction of the theoretical error bounds is conjectured and investigated numerically. This is followed by an indication of how the conjecture is supported by a rigorous argument.