120 resultados para High intensity focused ultrasound
Resumo:
Background: Cancer patients experience distress and anxiety related to their diagnosis, treatment and the unfamiliar cancer centre. Strategies with the aim of orienting patients to a cancer care facility may improve patient outcomes. Although meeting patients' information needs at different stages is important, there is little agreement about the type of information and the timing for information to be given. Orientation interventions aim to address information needs at the start of a person's experience with a cancer care facility. The extent of any benefit of these interventions is unknown. Objectives: To assess the effects of information interventions which orient patients and their carers/family to a cancer care facility, and to the services available in the facility. Search Methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2); MEDLINE (OvidSP) (1966 to Jun 2011), EMBASE (Ovid SP) (1966 to Jun 2011), CINAHL (EBSCO) (1982 to Jun 2011), PsycINFO (OvidSP) (1966 to Jun 2011), review articles and reference lists of relevant articles. We contacted principal investigators and experts in the field. Selection Criteria: Randomised controlled trials (RCTs), cluster RCTs and quasi-RCTs evaluating the effects of information interventions that orient patients and their carers/family to a cancer care facility. Data collection and analysis: Results of searches were reviewed against the pre-determined criteria for inclusion by two review authors. The primary outcomes were knowledge and understanding; health status and wellbeing, evaluation of care, and harms. Secondary outcomes were communication, skills acquisition, behavioural outcomes, service delivery, and health professional outcomes. We pooled results of RCTs using mean differences (MD) and 95% confidence intervals (CI). Main results: We included four RCTs involving 610 participants. All four trials aimed to investigate the effects of orientation programs for cancer patients to a cancer facility. There was high risk of bias across studies. Findings from two of the RCTs demonstrated significant benefits of the orientation intervention in relation to levels of distress (mean difference (MD) -8.96 (95% confidence interval (CI) -11.79 to -6.13), but non-significant benefits in relation to state anxiety levels (MD -9.77 (95% CI -24.96 to 5.41). Other outcomes for participants were generally positive (e.g. more knowledgeable about the cancer centre and cancer therapy, better coping abilities). No harms or adverse effects were measured or reported by any of the included studies. There were insufficient data on the other outcomes of interest. Authors conclusion: This review has demonstrated the feasibility and some potential benefits of orientation interventions. There was a low level of evidence suggesting that orientation interventions can reduce distress in patients. However, most of the other outcomes remain inconclusive (patient knowledge recall/ satisfaction). The majority of studies were subject to high risk of bias, and were likely to be insufficiently powered. Further well conducted and powered RCTs are required to provide evidence for determining the most appropriate intensity, nature, mode and resources for such interventions. Patient and carer-focused outcomes should be included.
Resumo:
Objectives To assess the effects of information interventions which orient patients and their carers/family to a cancer care facility and the services available within the facility. Design Systematic review of randomised controlled trials (RCTs), cluster RCTs and quasi-RCTs. Data sources MEDLINE, CINAHL, PsycINFO, EMBASE and the Cochrane Central Register of Controlled Trials. Methods We included studies evaluating the effect of an orientation intervention, compared with a control group which received usual care, or with trials comparing one orientation intervention with another orientation intervention. Results Four RCTs of 610 participants met the criteria for inclusion. Findings from two RCTs demonstrated significant benefits of the orientation intervention in relation to reduced levels of distress (mean difference (MD): −8.96, 95% confidence interval (95%CI): −11.79 to −6.13), but non-significant benefits in relation to the levels state anxiety levels (MD −9.77) (95%CI: −24.96 to 5.41). There are insufficient data on the other outcomes of interest. Conclusions This review has demonstrated the feasibility and some potential benefits of orientation interventions. There was a low level of evidence to suggest that orientation interventions can reduce distress in patients. However, other outcomes, including patient knowledge recall/satisfaction, remain inconclusive. The majority of trials were subjected to high risk of bias and were likely to be insufficiently powered. Further well conducted and powered RCTs are required to provide evidence for determining the most appropriate intensity, nature, mode and resources for such interventions. Patient and carer-focused outcomes should be included.
Resumo:
Residual amplitude modulation (RAM) mechanisms in electro-optic phase modulators are detrimental in applications that require high purity phase modulation of the incident laser beam. While the origins of RAMare not fully understood, measurements have revealed that it depends on the beam properties of the laser as well as the properties of the medium. Here we present experimental and theoretical results that demonstrate, for the first time, the dependence of RAM production in electro-optic phase modulators on beam intensity. The results show an order of magnitude increase in the level of RAM, around 10 dB, with a fifteenfold enhancement in the input intensity from 12 to 190 mW/mm 2. We show that this intensity dependent RAM is photorefractive in origin. © 2012 Optical Society of America.
Resumo:
Photocatalytic water splitting is a process which could potentially lead to commercially viable solar hydrogen production. This thesis uses an engineering perspective to investigate the technology. The effect of light intensity and temperature on photocatalytic water splitting was examined to evaluate the prospect of using solar concentration to increase the feasibility of the process. P25 TiO2 films deposited on conducting glass were used as photocatalyst electrodes and coupled with platinum electrodes which were also deposited on conducting glass. These films were used to form a photocatalysis cell and illuminated with a Xenon arc lamp to simulate solar light at intensities up to 50 suns. They were also tested at temperatures between 20°C and 100°C. The reaction demonstrated a sub-linear relationship with intensity. Photocurrent was proportional to intensity with an exponential value of 0.627. Increasing temperature resulted in an exponential relationship. This proved to follow an Arrhenius relationship with an activation energy of 10.3 kJ mol-1 and a pre-exponential factor of approximately 8.7×103. These results then formed the basis of a mathematical model which extrapolated beyond the range of the experimental tests. This model shows that the loss of efficiency from performing the reaction under high light intensity is offset by the increased reaction rate and efficiency from the associated temperature increase. This is an important finding for photocatalytic water splitting. It will direct future research in system design and materials research and may provide an avenue for the commercialisation of this technology.
Resumo:
Designing practical rules for controlling invasive species is a challenging task for managers, particularly when species are long-lived, have complex life cycles and high dispersal capacities. Previous findings derived from plant matrix population analyses suggest that effective control of long-lived invaders may be achieved by focusing on killing adult plants. However, the cost-effectiveness of managing different life stages has not been evaluated. We illustrate the benefits of integrating matrix population models with decision theory to undertake this evaluation, using empirical data from the largest infestation of mesquite (Leguminosae: Prosopis spp) within Australia. We include in our model the mesquite life cycle, different dispersal rates and control actions that target individuals at different life stages with varying costs, depending on the intensity of control effort. We then use stochastic dynamic programming to derive cost-effective control strategies that minimize the cost of controlling the core infestation locally below a density threshold and the future cost of control arising from infestation of adjacent areas via seed dispersal. Through sensitivity analysis, we show that four robust management rules guide the allocation of resources between mesquite life stages for this infestation: (i) When there is no seed dispersal, no action is required until density of adults exceeds the control threshold and then only control of adults is needed; (ii) when there is seed dispersal, control strategy is dependent on knowledge of the density of adults and large juveniles (LJ) and broad categories of dispersal rates only; (iii) if density of adults is higher than density of LJ, controlling adults is most cost-effective; (iv) alternatively, if density of LJ is equal or higher than density of adults, management efforts should be spread between adults, large and to a lesser extent small juveniles, but never saplings. Synthesis and applications.In this study, we show that simple rules can be found for managing invasive plants with complex life cycles and high dispersal rates when population models are combined with decision theory. In the case of our mesquite population, focussing effort on controlling adults is not always the most cost-effective way to meet our management objective.
Resumo:
This chapter describes a university/high school partnership focused on digital storytelling. It also explains the multi-stage process used to establish this successful partnership and project. The authors discuss the central role that technology played in developing this university/high school partnership, a collaboration that extended the impact of a digital storytelling project to reach high school students, university students, educators, high school administrators, and the local community. Valuing a reflective process that can lead to the creation of a powerful final product, the authors describe the impact of digital storytelling on multiple stakeholders, including the 13 university students and 33 culturally and linguistically diverse high school youth who participated during the fall of 2009. In addition, the chapter includes reflections from university and high school student participants expressed during focus groups conducted throughout the project. While most participants had a positive experience with the project, complications with the technology component often caused frustrations and additional challenges. Goals for sharing this project are to critically evaluate digital storytelling, describe lessons learned, and recommend good practices for others working within a similar context or with parallel goals.
Resumo:
Over the last few decades, electric and electromagnetic fields have achieved important role as stimulator and therapeutic facility in biology and medicine. In particular, low magnitude, low frequency, pulsed electromagnetic field has shown significant positive effect on bone fracture healing and some bone diseases treatment. Nevertheless, to date, little attention has been paid to investigate the possible effect of high frequency, high magnitude pulsed electromagnetic field (pulse power) on functional behaviour and biomechanical properties of bone tissue. Bone is a dynamic, complex organ, which is made of bone materials (consisting of organic components, inorganic mineral and water) known as extracellular matrix, and bone cells (live part). The cells give the bone the capability of self-repairing by adapting itself to its mechanical environment. The specific bone material composite comprising of collagen matrix reinforced with mineral apatite provides the bone with particular biomechanical properties in an anisotropic, inhomogeneous structure. This project hypothesized to investigate the possible effect of pulse power signals on cortical bone characteristics through evaluating the fundamental mechanical properties of bone material. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses up to 500 V and 10 kHz. Bone shows distinctive characteristics in different loading mode. Thus, functional behaviour of bone in response to pulse power excitation were elucidated by using three different conventional mechanical tests applying three-point bending load in elastic region, tensile and compressive loading until failure. Flexural stiffness, tensile and compressive strength, hysteresis and total fracture energy were determined as measure of main bone characteristics. To assess bone structure variation due to pulse power excitation in deeper aspect, a supplementary fractographic study was also conducted using scanning electron micrograph from tensile fracture surfaces. Furthermore, a non-destructive ultrasonic technique was applied for determination and comparison of bone elasticity before and after pulse power stimulation. This method provided the ability to evaluate the stiffness of millimetre-sized bone samples in three orthogonal directions. According to the results of non-destructive bending test, the flexural elasticity of cortical bone samples appeared to remain unchanged due to pulse power excitation. Similar results were observed in the bone stiffness for all three orthogonal directions obtained from ultrasonic technique and in the bone stiffness from the compression test. From tensile tests, no significant changes were found in tensile strength and total strain energy absorption of the bone samples exposed to pulse power compared with those of the control samples. Also, the apparent microstructure of the fracture surfaces of PP-exposed samples (including porosity and microcracks diffusion) showed no significant variation due to pulse power stimulation. Nevertheless, the compressive strength and toughness of millimetre-sized samples appeared to increase when the samples were exposed to 66 hours high power pulsed electromagnetic field through screws with small contact cross-section (increasing the pulsed electric field intensity) compare to the control samples. This can show the different load-bearing characteristics of cortical bone tissue in response to pulse power excitation and effectiveness of this type of stimulation on smaller-sized samples. These overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electromagnetic field at 500 V and 10 kHz through capacitive coupling method, was athermal and did not damage the bone tissue construction.
Resumo:
Background: Previous studies have shown that fundamental movement skills (FMS) and physical activity are related. Specifically, earlier studies have demonstrated that the ability to perform a variety of FMS increases the likelihood of children participating in a range of physical activities throughout their lives. To date, however, there have not been studies focused on the development of, or the relationship between, these variables through junior high school (that is, between the ages of 13 and 15). Such studies might provide important insights into the relationships between FMS and physical activity during adolescence, and suggest ways to design more effective physical education programmes for adolescents. Purpose: The main purposes of the study are: (1) to investigate the development of the students' self-reported physical activity and FMS from Grade 7 to Grade 9, (2) to analyse the associations among the students' FMS and self-reported physical activity through junior high school, (3) to analyse whether there are gender differences in research tasks one and/or two. Participants and setting: The participants in the study were 152 Finnish students, aged 13 and enrolled in Grade 7 at the commencement of the study. The sample included 66 girls and 86 boys who were drawn from three junior high schools in Middle Finland. Research design and data collection: Both the FMS tests and questionnaires pertaining to self-reported physical activity were completed annually during a 3 year period: in August (when the participants were in Grade 7), January (Grade 8), and in May (Grade 9). Data analysis: Repeated measures multivariate analysis of variances (MANOVAs) were used to analyse the interaction between gender and time (three measurement points) in FMS test sumscores and self-reported physical activity scores. The relationships between self-reported physical activity scores and fundamental movement skill sumscores through junior high school were analysed using Structural Equation Modelling (SEM) with LISREL 8.80 software. Findings: The MANOVA for self-reported physical activity demonstrated that both genders' physical activity decreased through junior high school. The MANOVA for the FMS revealed that the boys' FMS sumscore increased whereas the girls' skills decreased through junior high school. The SEM and squared multiple correlations revealed FMS in Grades 7 and 8 as well as physical activity in Grade 9 explained FMS in Grade 9. The portion of prediction was 69% for the girls and 55% for the boys. Additionally, physical activity measured in Grade 7 and FMS measured in Grade 9 explained physical activity in Grade 9. The portion of prediction was 12% for the girls and 29% for the boys. In the boys' group, three additional paths were found; FMS in Grade 7 explained physical activity in Grade 9, physical activity in Grade 7 explained FMS in Grade 8, and physical activity in Grade 7 explained physical activity in Grade 8. Conclusions: The study suggests that supporting and encouraging FMS and physical activity are co-related and when considering combined scores there is a greater likelihood of healthy lifelong outcomes. Therefore, the conclusion can be drawn that FMS curriculum in school-based PE is a plausible way to ensure good lifelong outcomes. Earlier studies support that school physical education plays an important role in developing students FMS and is in a position to thwart the typical decline of physical activity in adolescence. These concepts are particularly important for adolescent girls as this group reflects the greatest decline in physical activity during the adolescent period.
Resumo:
Wandering is aimless and repetitive locomotion that may expose persons with dementia (PWD) to elopement, getting lost and death. This study is an Australian replication of a US study. Cross-disciplinary consensus- based analysis was applied to data from five focus groups (N =47: cognitively intact LTC residents (5), carers of PWD (11), home care workers (13) allied health professionals and health-focused engineers (7) and RNs (11). Groups received briefing about wandering monitoring and elopement management systems. Consistent with US attitudes, participants in all groups agreed on what a wandering technology should do, how it should do it, and necessary technical specifications. Within each group participants raised the need for a continuum of care for PWD and the imperative for early recognition of potentially dangerous wandering and getting lost when they occur. Global Positioning System elopement management was the preferred option. Interestingly, the prospective value of GPS to recover a lost or eloped wanderer far outweighed privacy concerns, as in the US. A pervasive theme was that technologies need to augment, but cannot replace, attentive, compassionate caregiver presence. A significant theme raised only by Australian carers of PWD was the potential for development of implantable GPS technologies and the need for public debate about attendant ethical issues. Given that 60% or more of over 200,000 Australians and 4.5 million Americans with dementia will develop wandering, there is a pressing need to develop effective locator systems that may delay institutionalization, help allay carer concern and enhance PWD safety.
Resumo:
A general electrical model of a piezoelectric transducer for ultrasound applications consists of a capacitor in parallel with RLC legs. A high power voltage source converter can however generate significant voltage stress across the transducer that creates high leakage currents. One solution is to reduce the voltage stress across the piezoelectric transducer by using an LC filter, however a main drawback is changing the piezoelectric resonant frequency and its characteristics. Thereby it reduces the efficiency of energy conversion through the transducer. This paper proposes that a high frequency current source converter is a suitable topology to drive high power piezoelectric transducers efficiently.
Resumo:
Most high-power ultrasound applications are driven by two-level inverters. However, the broad spectral content of the two-level pulse results in undesired harmonics that can decrease the performance of the system significantly. On the other hand, it is crucial to excite the piezoelectric devices at their main resonant frequency in order to have maximum energy conversion. Therefore a high-quality, low-distorted power signal is needed to excite the high-power piezoelectric transducer at its resonant frequency. This study proposes an efficient approach to develop the performance of high-power ultrasonic applications using multilevel inverters along with a frequency estimation algorithm. In this method, the resonant frequencies are estimated based on relative minimums of the piezoelectric impedance frequency response. The algorithm follows the resonant frequency variation and adapts the multilevel inverter reference frequency to drive an ultrasound transducer at high power. Extensive simulation and experimental results indicate the effectiveness of the proposed approach.
Resumo:
In this paper characteristic of a DBD (Dielectric Barrier Discharge) plasma lamp is investigated based on the lamp intensity and power consumption. A pulsed power supply with controllable parameters based on a push-pull converter is developed for lamp excitation at different voltage levels and repetition rate. The experimentations were conducted for 28 different operating points with the frequency range of 2 kHz to 15 Khz at output voltage levels of between 7.4 kV up to 13 kV. The obtained results show the feasibility of finding an optimum operation point due to nonlinear behaviour of the DBD lamp.
Resumo:
Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.
Resumo:
Objective To evaluate the time course of the recovery of transverse strain in the Achilles and patellar tendon following a bout of resistance exercise. Methods Seventeen healthy adults underwent sonographic examination of the right patellar (n=9) and Achilles (n=8) tendons immediately prior to and following 90 repetitions of weight-bearing quadriceps and gastrocnemius-resistance exercise performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the enthesis and transverse strain, as defined by the stretch ratio, was repeatedly monitored over a 24 h recovery period. Results Resistance exercise resulted in an immediate decrease in Achilles (t7=10.6, p<0.01) and patellar (t8=8.9, p<0.01) tendon thickness, resulting in an average transverse stretch ratio of 0.86±0.04 and 0.82±0.05, which was not significantly different between tendons. The magnitude of the immediate transverse strain response, however, was reduced with advancing age (r=0.63, p<0.01). Recovery in transverse strain was prolonged compared with the duration of loading and exponential in nature. The average primary recovery time was not significantly different between the Achilles (6.5±3.2 h) and patellar (7.1±3.2 h) tendons. Body weight accounted for 62% and 64% of the variation in recovery time, respectively. Conclusions Despite structural and biochemical differences between the Achilles and patellar tendon, the mechanisms underlying transverse creep recovery in vivo appear similar and are highly time dependent. These novel findings have important implications concerning the time required for the mechanical recovery of high-stress tendons following an acute bout of exercise.
Resumo:
The ability of a piezoelectric transducer in energy conversion is rapidly expanding in several applications. Some of the industrial applications for which a high power ultrasound transducer can be used are surface cleaning, water treatment, plastic welding and food sterilization. Also, a high power ultrasound transducer plays a great role in biomedical applications such as diagnostic and therapeutic applications. An ultrasound transducer is usually applied to convert electrical energy to mechanical energy and vice versa. In some high power ultrasound system, ultrasound transducers are applied as a transmitter, as a receiver or both. As a transmitter, it converts electrical energy to mechanical energy while a receiver converts mechanical energy to electrical energy as a sensor for control system. Once a piezoelectric transducer is excited by electrical signal, piezoelectric material starts to vibrate and generates ultrasound waves. A portion of the ultrasound waves which passes through the medium will be sensed by the receiver and converted to electrical energy. To drive an ultrasound transducer, an excitation signal should be properly designed otherwise undesired signal (low quality) can deteriorate the performance of the transducer (energy conversion) and increase power consumption in the system. For instance, some portion of generated power may be delivered in unwanted frequency which is not acceptable for some applications especially for biomedical applications. To achieve better performance of the transducer, along with the quality of the excitation signal, the characteristics of the high power ultrasound transducer should be taken into consideration as well. In this regard, several simulation and experimental tests are carried out in this research to model high power ultrasound transducers and systems. During these experiments, high power ultrasound transducers are excited by several excitation signals with different amplitudes and frequencies, using a network analyser, a signal generator, a high power amplifier and a multilevel converter. Also, to analyse the behaviour of the ultrasound system, the voltage ratio of the system is measured in different tests. The voltage across transmitter is measured as an input voltage then divided by the output voltage which is measured across receiver. The results of the transducer characteristics and the ultrasound system behaviour are discussed in chapter 4 and 5 of this thesis. Each piezoelectric transducer has several resonance frequencies in which its impedance has lower magnitude as compared to non-resonance frequencies. Among these resonance frequencies, just at one of those frequencies, the magnitude of the impedance is minimum. This resonance frequency is known as the main resonance frequency of the transducer. To attain higher efficiency and deliver more power to the ultrasound system, the transducer is usually excited at the main resonance frequency. Therefore, it is important to find out this frequency and other resonance frequencies. Hereof, a frequency detection method is proposed in this research which is discussed in chapter 2. An extended electrical model of the ultrasound transducer with multiple resonance frequencies consists of several RLC legs in parallel with a capacitor. Each RLC leg represents one of the resonance frequencies of the ultrasound transducer. At resonance frequency the inductor reactance and capacitor reactance cancel out each other and the resistor of this leg represents power conversion of the system at that frequency. This concept is shown in simulation and test results presented in chapter 4. To excite a high power ultrasound transducer, a high power signal is required. Multilevel converters are usually applied to generate a high power signal but the drawback of this signal is low quality in comparison with a sinusoidal signal. In some applications like ultrasound, it is extensively important to generate a high quality signal. Several control and modulation techniques are introduced in different papers to control the output voltage of the multilevel converters. One of those techniques is harmonic elimination technique. In this technique, switching angles are chosen in such way to reduce harmonic contents in the output side. It is undeniable that increasing the number of the switching angles results in more harmonic reduction. But to have more switching angles, more output voltage levels are required which increase the number of components and cost of the converter. To improve the quality of the output voltage signal with no more components, a new harmonic elimination technique is proposed in this research. Based on this new technique, more variables (DC voltage levels and switching angles) are chosen to eliminate more low order harmonics compared to conventional harmonic elimination techniques. In conventional harmonic elimination method, DC voltage levels are same and only switching angles are calculated to eliminate harmonics. Therefore, the number of eliminated harmonic is limited by the number of switching cycles. In the proposed modulation technique, the switching angles and the DC voltage levels are calculated off-line to eliminate more harmonics. Therefore, the DC voltage levels are not equal and should be regulated. To achieve this aim, a DC/DC converter is applied to adjust the DC link voltages with several capacitors. The effect of the new harmonic elimination technique on the output quality of several single phase multilevel converters is explained in chapter 3 and 6 of this thesis. According to the electrical model of high power ultrasound transducer, this device can be modelled as parallel combinations of RLC legs with a main capacitor. The impedance diagram of the transducer in frequency domain shows it has capacitive characteristics in almost all frequencies. Therefore, using a voltage source converter to drive a high power ultrasound transducer can create significant leakage current through the transducer. It happens due to significant voltage stress (dv/dt) across the transducer. To remedy this problem, LC filters are applied in some applications. For some applications such as ultrasound, using a LC filter can deteriorate the performance of the transducer by changing its characteristics and displacing the resonance frequency of the transducer. For such a case a current source converter could be a suitable choice to overcome this problem. In this regard, a current source converter is implemented and applied to excite the high power ultrasound transducer. To control the output current and voltage, a hysteresis control and unipolar modulation are used respectively. The results of this test are explained in chapter 7.