136 resultados para Experimental study
Resumo:
Durability is a significant issue to focus on for newly developed structural lightweight cement composite (ULCC). This paper presents an experimental study to evaluate the resistance of ULCC to water and chloride ion penetration. Chloride penetrability and sorptivity were evaluated for ULCC (unit weight about 1450 kg/m3) and compared with those of a normal weight concrete (NWC), a lightweight aggregate concrete (LWC), and an ultra lightweight composite with proprietary cementitious binder (DB) (unit weight about 1450 kg/m3) at similar compressive strength of about 60 MPa. Rapid chloride penetrability test, rapid migration test, water absorption (sorptivity) test, and water permeability test were conducted on these mixtures. Results indicate that ULCC and DB had comparable performance. Compared with control LWC and NWC at similar strength level, the ULCC and DB mixtures had higher resistance to chloride ion penetration, lower water absorption and virtually impermeable to water penetration.
Resumo:
This paper presents an experimental study to evaluate the effect of coarse and fine LWA in concrete on its water absorption and permeability, and resistance to chloride-ion penetration. In additions, LWC with lower unit weight of about 1300 kg/m3 but high resistance to water and chloride-ion penetration was developed and evaluated. The results indicate that the incorporation of coarse LWA in concrete increases water sorptivity and permeability slightly compared to NWC of similar w/c. The resistance of the sand-LWC to chloride-ion penetration depends on porosity of the coarse LWA. Fine LWA has more influence on the transport proper-ties of concrete than coarse LWA. Use of lightweight crushed sand <1.18 mm reduced the resistance of the LWC to water and chloride-ion penetration to some extent. With low w/cm and silica fume, low unit weight LWC (~1300 kg/m3) was produced with higher resistance to water and chloride ion penetration compared with concretes of higher unit weights.
Resumo:
Fire safety design of building structures has received greater attention in recent times due to continuing losses of properties and lives in fires. However, the structural behaviour of thin-walled cold-formed steel columns under fire conditions is not well understood despite the increasing use of light gauge steels in building construction. Cold-formed steel columns are often subject to local buckling effects. Therefore a series of laboratory tests of lipped and unlipped channel columns made of varying steel thicknesses and grades was undertaken at uniform elevated temperatures up to 700°C under steady state conditions. Finite element models of the tested columns were also developed, and their elastic buckling and nonlinear analysis results were compared with test results at elevated temperatures. Effects of the degradation of mechanical properties of steel with temperature were included in the finite element analyses. The use of accurately measured yield stress, elasticity modulus and stress-strain curves at elevated temperatures provided a good comparison of the ultimate loads and load-deflection curves from tests and finite element analyses. The commonly used effective width design rules and the direct strength method at ambient temperature were then used to predict the ultimate loads at elevated temperatures by using the reduced mechanical properties. By comparing these predicted ultimate loads with those from tests and finite element analyses, the accuracy of using this design approach was evaluated.
Resumo:
This paper presents the details of experimental studies on the shear behaviour and strength of lipped channel beams (LCBs). The LCB sections are commonly used as flexural members in residential, industrial and commercial buildings. To ensure safe and efficient designs of LCBs, many research studies have been undertaken on the flexural behaviour of LCBs. To date, however, limited research has been conducted into the strength of LCB sections subject to shear actions. Therefore a detailed experimental study involving 20 tests was undertaken to investigate the shear behaviour and strength of LCBs. This research has shown the presence of increased shear capacity of LCBs due to the additional fixity along the web to flange juncture, but the current design rules (AS/NZS 4600 and AISI) ignore this effect and were thus found to be conservative. Therefore they were modified by including a higher elastic shear buckling coefficient. Ultimate shear capacity results obtained from the shear tests were compared with the modified shear capacity design rules. It was found that they are still conservative as they ignore the presence of post-buckling strength. Hence the AS/NZS 4600 and AISI design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method (DSM) format. This paper presents the details of this study and the results including the modified shear design rules.
Resumo:
This paper has presented the details of an investigation into the flexural and flexuraltorsional buckling behaviour of cold-formed structural steel columns with pinned and fixed ends. Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns. This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural and flexural torsional buckling. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses.
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.
Resumo:
Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.
Resumo:
Reasons for performing the study As growth hormone increases lean body mass, it could be a therapy for obese horses. However, growth hormone use induces hyperinsulinaemia in some species, so further investigation is warranted. Objectives To investigate the effects of feeding, exercise and growth hormone therapy on basal insulin concentrations in healthy horses. Study design In vivo experimental study. Methods Blood samples were obtained every 30 min from 12 geldings over 24 h, to establish basal serum insulin concentrations, before they underwent a 3-week exercise programme. Horses were allocated into 2 groups and exercised for another 4 weeks. Group A received daily i.m. injections of recombinant equine growth hormone; 5 mg/day for 5 days, then 12.5 mg/day for 16 days. Blood samples were taken daily before feeding. Insulin vs. time area under curve of Groups A and B were compared using a Student's unpaired t test. Results Horses demonstrated insulin peaks within 2 h of feeding of 577 ± 108.3 pmol/l at 09.30 h and 342.4 ± 75.7 pmol/l at 17.30 h, despite receiving the same meal. The nadir was between midnight and 07.30 h. Exercise had no effect on basal insulin concentrations prior to equine growth hormone administrations. The equine growth hormone injections increased serum insulin concentrations (P = 0.01) within Group A, from 44.4 ± 15.3 pmol/l initially to 320.9 ± 238.2 pmol/l by Day 12. Exogenous growth hormone caused variable hyperinsulinaemia, which was alleviated once equine growth hormone administration ceased. Conclusions Single serum samples taken prior to the morning meal provide basal insulin concentrations. Exercise did not change basal insulin concentrations. However, equine growth hormone injections increased basal insulin concentrations, which were not ameliorated by exercise. Potential relevance This therapy is not recommended to address obesity in insulin-resistant equids.
Resumo:
In the past years, there has been a surge in game controllers that allow players to play in a more physical, more natural way. In this paper we present an experimental study of the effect of gaming using these naturally mapped controllers on the player experience in a social setting. Results support the hypothesis that more naturally mapped controllers augment spatial presence. Furthermore, the results suggest that gaming with more naturally mapped controllers augment social presence for female players, but not for male players. However, gaming via naturally mapped controllers decreases perceived control and actual performance. Hence, users with high performance expectations might not benefit from gaming via naturally mapped controllers.
Resumo:
Osteocytes are the mature cells and perform as mechanosensors within the bone. The mechanical property of osteocytes plays an important role to fulfill these functions. However, little researches have been done to investigate the mechanical deformation properties of single osteocytes. Atomic Force Microscopy (AFM) is a state-of-art experimental facility for high resolution imaging of tissues, cells and any surfaces as well as for probing mechanical properties of the samples both qualitatively and quantitatively. In this paper, the experimental study based on AFM is firstly used to obtain forceindentation curves of single round osteocytes. The porohyperelastic (PHE) model of a single osteocyte is then developed by using the inverse finite element analysis (FEA) to identify and extract mechanical properties from the experiment results. It has been found that the PHE model is a good candidature for biomechanics studies of osteocytes.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke. An example of application is given with monocular SLAM estimating the pose of the UGV while smoke is present in the environment. It is shown that the proposed novel quality metric can be used to anticipate situations where the quality of the pose estimate will be significantly degraded due to the input image data. This leads to decisions of advantageously switching between data sources (e.g. using infrared images instead of visual images).
Resumo:
This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke.
Resumo:
The Australian masonry standard allows either prism tests or correction factors based on the block height and mortar thickness to evaluate masonry compressive strength. The correction factor helps the taller units with conventional 10 mm mortar being not disadvantaged due to size effect. In recent times, 2-4 mm thick, high-adhesive mortars and H blocks with only the mid-web shell are used in masonry construction. H blocks and thinner and higher adhesive mortars have renewed interest of the compression behaviour of hollow concrete masonry and hence is revisited in this paper. This paper presents an experimental study carried out to examine the effects of the thickness of mortar joints, the type of mortar adhesives and the presence of web shells in the hollow concrete masonry prisms under axial compression. A non-contact digital image correlation technique was used to measure the deformation of the prisms and was found adequate for the determination of strain fi eld of the loaded face shells subjected to axial compression. It is found that the absence of end web shells lowers the compressive strength and stiffness of the prisms and the thinner and higher adhesive mortars increase the compressive strength and stiffness, while lowering the Poisson's ratio. © Institution of Engineers Australia, 2013.
Resumo:
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs were commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Due to the unique geometry of LSBs, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSBs. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear and combined actions. However, to date, no investigation has been conducted into the web crippling behaviour and strength of LSB sections. Hence detailed experimental studies were conducted to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 26 web crippling tests was conducted and the results were compared with current AS/NZS 4600 design rules. This comparison showed that AS/NZS 4600 (SA, 2005) design rules are very conservative for LSB sections under EOF and IOF load cases. Suitable design equations have been proposed to determine the web crippling capacity of LSBs based on experimental results. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases.