172 resultados para Dierdorf, Dan
Resumo:
Hunter argues that cognitive science models of human thinking explain how analogical reasoning and precedential reasoning operate in law. He offers an explanation of why various legal theories are so limited and calls for greater attention to what is actually happening when lawyers and judges reason, by analogy, with precedent.
Resumo:
We propose here a new approach to legal thinking that is based on principles of Gestalt perception. Using a Gestalt view of perception, which sees perception as the process of building a conceptual representation of the given stimulus, we articulate legal thinking as the process of building a representation for the given facts of a case. We propose a model in which top-down and bottom-up processes interact together to build arguments (or representations) in legal thinking. We discuss some implications of our approach, especially with respect to modeling precedential reasoning and creativity in legal thinking.
Resumo:
This paper examines the use of connectionism (neural networks) in modelling legal reasoning. I discuss how the implementations of neural networks have failed to account for legal theoretical perspectives on adjudication. I criticise the use of neural networks in law, not because connectionism is inherently unsuitable in law, but rather because it has been done so poorly to date. The paper reviews a number of legal theories which provide a grounding for the use of neural networks in law. It then examines some implementations undertaken in law and criticises their legal theoretical naïvete. It then presents a lessons from the implementations which researchers must bear in mind if they wish to build neural networks which are justified by legal theories.
Resumo:
In attempting to build intelligent litigation support tools, we have moved beyond first generation, production rule legal expert systems. Our work integrates rule based and case based reasoning with intelligent information retrieval. When using the case based reasoning methodology, or in our case the specialisation of case based retrieval, we need to be aware of how to retrieve relevant experience. Our research, in the legal domain, specifies an approach to the retrieval problem which relies heavily on an extended object oriented/rule based system architecture that is supplemented with causal background information. We use a distributed agent architecture to help support the reasoning process of lawyers. Our approach to integrating rule based reasoning, case based reasoning and case based retrieval is contrasted to the CABARET and PROLEXS architectures which rely on a centralised blackboard architecture. We discuss in detail how our various cooperating agents interact, and provide examples of the system at work. The IKBALS system uses a specialised induction algorithm to induce rules from cases. These rules are then used as indices during the case based retrieval process. Because we aim to build legal support tools which can be modified to suit various domains rather than single purpose legal expert systems, we focus on principles behind developing legal knowledge based systems. The original domain chosen was theAccident Compensation Act 1989 (Victoria, Australia), which relates to the provision of benefits for employees injured at work. For various reasons, which are indicated in the paper, we changed our domain to that ofCredit Act 1984 (Victoria, Australia). This Act regulates the provision of loans by financial institutions. The rule based part of our system which provides advice on the Credit Act has been commercially developed in conjunction with a legal firm. We indicate how this work has lead to the development of a methodology for constructing rule based legal knowledge based systems. We explain the process of integrating this existing commercial rule based system with the case base reasoning and retrieval architecture.
Resumo:
In this paper we discuss the strengths and weaknesses of a range of artificial intelligence approaches used in legal domains. Symbolic reasoning systems which rely on deductive, inductive and analogical reasoning are described and reviewed. The role of statistical reasoning in law is examined, and the use of neural networks analysed. There is discussion of architectures for, and examples of, systems which combine a number of these reasoning strategies. We conclude that to build intelligent legal decision support systems requires a range of reasoning strategies.
Resumo:
Australian law similar to that of United States -- Australian law requires copyright must subsist in plaintiff's material and defendent's work must infringe plaintiff's copyright to find defendent liable for illegal copying -- subsistence -- infringement -- two cases that touch on 'look and feel' issue -- passing-off -- look and feel of computer program deserves protection
Resumo:
Induction is an interesting model of legal reasoning, since it provides a method of capturing initial states of legal principles and rules, and adjusting these principles and rules over time as the law changes. In this article I explain how Artificial Intelligence-based inductive learning algorithms work, and show how they have been used in law to model legal domains. I identify some problems with implementations undertaken in law to date, and create a taxonomy of appropriate cases to use in legal inductive inferencing systems. I suggest that inductive learning algorithms have potential in modeling law, but that the artificial intelligence implementations to date are problematic. I argue that induction should be further investigated, since it has the potential to be an extremely useful mechanism for understanding legal domains.
Resumo:
Commercial legal expert systems are invariably rule based. Such systems are poor at dealing with open texture and the argumentation inherent in law. To overcome these problems we suggest supplementing rule based legal expert systems with case based reasoning or neural networks. Both case based reasoners and neural networks use cases-but in very different ways. We discuss these differences at length. In particular we examine the role of explanation in existing expert systems methodologies. Because neural networks provide poor explanation facilities, we consider the use of Toulmin argument structures to support explanation (S. Toulmin, 1958). We illustrate our ideas with regard to a number of systems built by the authors
Resumo:
In this paper we provide an overview of a number of fundamental reasoning formalisms in artificial intelligence which can and have been used in modelling legal reasoning. We describe deduction, induction and analogical reasoning formalisms, and show how they can be used separately to model legal reasoning. We argue that these formalisms can be used together to model legal reasoning more accurately, and describe a number of attempts to integrate the approaches.