113 resultados para Coronal planes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction This investigation aimed to assess the consistency and accuracy of radiation therapists (RTs) performing cone beam computed tomography (CBCT) alignment to fiducial markers (FMs) (CBCTFM) and the soft tissue prostate (CBCTST). Methods Six patients receiving prostate radiation therapy underwent daily CBCTs. Manual alignment of CBCTFM and CBCTST was performed by three RTs. Inter-observer agreement was assessed using a modified Bland–Altman analysis for each alignment method. Clinically acceptable 95% limits of agreement with the mean (LoAmean) were defined as ±2.0 mm for CBCTFM and ±3.0 mm for CBCTST. Differences between CBCTST alignment and the observer-averaged CBCTFM (AvCBCTFM) alignment were analysed. Clinically acceptable 95% LoA were defined as ±3.0 mm for the comparison of CBCTST and AvCBCTFM. Results CBCTFM and CBCTST alignments were performed for 185 images. The CBCTFM 95% LoAmean were within ±2.0 mm in all planes. CBCTST 95% LoAmean were within ±3.0 mm in all planes. Comparison of CBCTST with AvCBCTFM resulted in 95% LoA of −4.9 to 2.6, −1.6 to 2.5 and −4.7 to 1.9 mm in the superior–inferior, left–right and anterior–posterior planes, respectively. Conclusions Significant differences were found between soft tissue alignment and the predicted FM position. FMs are useful in reducing inter-observer variability compared with soft tissue alignment. Consideration needs to be given to margin design when using soft tissue matching due to increased inter-observer variability. This study highlights some of the complexities of soft tissue guidance for prostate radiation therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of CT anatomy is increasingly vital in daily radiotherapy practice, especially with more widespread use of cross-sectional image-guided radiotherapy (IGRT) techniques. Existing CT anatomy texts are predominantly written for the diagnostic practitioner and do not always address the radiotherapy issues while emphasising structures that are not common to radiotherapy practice. CT Anatomy for Radiotherapy is a new radiotherapy-specific text that is intended to prepare the reader for CT interpretation for both IGRT and treatment planning. It is suitable for undergraduate students, qualified therapy radiographers, dosimetrists and may be of interest to oncologists and registrars engaged in treatment planning. All essential structures relevant to radiotherapy are described and depicted on 3D images generated from radiotherapy planning systems. System-based labelled CT images taken in relevant imaging planes and patient positions build up understanding of relational anatomy and CT interpretation. Images are accompanied by comprehensive commentary to aid with interpretation. This simplified approach is used to empower the reader to rapidly gain image interpretation skills. The book pays special attention to lymph node identification as well as featuring a unique section on Head and Neck Deep Spaces to help understanding of common pathways of tumour spread. Fully labelled CT images using radiotherapy-specific views and positioning are complemented where relevant by MR and fusion images. A brief introduction to image interpretation using IGRT devices is also covered. The focus of the book is on radiotherapy and some images of common tumour pathologies are utilised to illustrate some relevant abnormal anatomy. Short self-test questions help to keep the reader engaged throughout.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Supine imaging modalities provide valuable 3D information on scoliotic anatomy, but the altered spine geometry between the supine and standing positions affects the Cobb angle measurement. Previous studies report a mean 7°-10° Cobb angle increase from supine to standing, but none have reported the effect of endplate pre-selection or whether other parameters affect this Cobb angle difference. Methods Cobb angles from existing coronal radiographs were compared to those on existing low-dose CT scans taken within three months of the reference radiograph for a group of females with adolescent idiopathic scoliosis. Reformatted coronal CT images were used to measure supine Cobb angles with and without endplate pre-selection (end-plates selected from the radiographs) by two observers on three separate occasions. Inter and intra-observer measurement variability were assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb angle change and eight variables: patient age, mass, standing Cobb angle, Risser sign, ligament laxity, Lenke type, fulcrum flexibility and time delay between radiograph and CT scan. Results Fifty-two patients with right thoracic Lenke Type 1 curves and mean age 14.6 years (SD 1.8) were included. The mean Cobb angle on standing radiographs was 51.9° (SD 6.7). The mean Cobb angle on supine CT images without pre-selection of endplates was 41.1° (SD 6.4). The mean Cobb angle on supine CT images with endplate pre-selection was 40.5° (SD 6.6). Pre-selecting vertebral endplates increased the mean Cobb change by 0.6° (SD 2.3, range −9° to 6°). When free to do so, observers chose different levels for the end vertebrae in 39% of cases. Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility (p = 0.001), age (p = 0.027) and standing Cobb angle (p < 0.001). The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusions Pre-selecting vertebral endplates causes minor changes to the mean supine to standing Cobb change. There is a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility such that this difference can be considered a potential alternative measure of spinal flexibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation into the spatial distribution of road traffic noise levels on a balcony is conducted. A balcony constructed to a special acoustic design due to its elevation above an 8 lane motorway is selected for detailed measurements. The as-constructed balcony design includes solid parapets, side walls, ceiling shields and highly absorptive material placed on the ceiling. Road traffic noise measurements are conducted spatially using a five channel acoustic analyzer, where four microphones are located at various positions within the balcony space and one microphone placed outside the parapet at a reference position. Spatial distributions in both vertical and horizontal planes are measured. A theoretical model and prediction configuration is presented that assesses the acoustic performance of the balcony under existing traffic flow conditions. The prediction model implements a combined direct path, specular reflection path and diffuse reflection path utilizing image source and radiosity techniques. Results obtained from the prediction model are presented and compared to the measurement results. The predictions are found to correlate well with measurements with some minor differences that are explained. It is determined that the prediction methodology is acceptable to assess a wider range of street and balcony configuration scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hamstring strain injuries (HSIs) are the most prevalent injury in a number of sports, and while anterior cruciate ligament (ACL) injuries are less common, they are far more severe and have long-term implications, such as an increased risk of developing osteoarthritis later in life. Given the high incidence and severity of these injuries, they are key targets of injury preventive programs in elite sport. Evidence has shown that a previous severe knee injury (including ACL injury) increases the risk of HSI; however, whether the functional deficits that occur after HSI result in an increased risk of ACL injury has yet to be considered. In this clinical commentary, we present evidence that suggests that the link between previous HSI and increased risk of ACL injury requires further investigation by drawing parallels between deficits in hamstring function after HSI and in women athletes, who are more prone to ACL injury than men athletes. Comparisons between the neuromuscular function of the male and female hamstring has shown that women display lower hamstring-to-quadriceps strength ratios during isokinetic knee flexion and extension, increased activation of the quadriceps compared with the hamstrings during a stop-jump landing task, a greater time required to reach maximal isokinetic hamstring torque, and lower integrated myoelectrical hamstring activity during a sidestep cutting maneuver. Somewhat similarly, in athletes with a history of HSI, the previously injured limb, compared with the uninjured limb, displays lower eccentric knee flexor strength, a lower hamstrings-to-quadriceps strength ratio, lower voluntary myoelectrical activity during maximal knee flexor eccentric contraction, a lower knee flexor eccentric rate of torque development, and lower voluntary myoelectrical activity during the initial portion of eccentric contraction. Given that the medial and lateral hamstrings have different actions at the knee joint in the coronal plane, which hamstring head is previously injured might also be expected to influence the likelihood of future ACL. Whether the deficits in function after HSI, as seen in laboratory-based studies, translate to deficits in hamstring function during typical injurious tasks for ACL injury has yet to be determined but should be a consideration for future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons in the lateral nucleus of the amygdala (LA). In order to begin to understand how fear memories are stored and processed by synaptic changes in the LA, we have quantified both the entire neural number and the sub-cellular structure of LA principal neurons.We first used stereological cell counting methods on Gimsa or GABA immunostained rat brain. We identified 60,322+/-1408 neurons in the LA unilaterally (n=7). Of these 16,917+/-471 were GABA positive. The intercalated nuclei were excluded from the counts and thus GABA cells are believed to represent GABAergic interneurons. The sub-nuclei of the LA were also independently counted. We then quantified the morphometric properties of in vitro electrophysiologically identified principal neurons of the LA, corrected for shrinkage in xyz planes. The total dendritic length was 9.97+/-2.57mm, with 21+/-4 nodes (n=6). Dendritic spine density was 0.19+/-0.03 spines/um (n=6). Intra-LA axon collaterals had a bouton density of 0.1+/-0.02 boutons/um (n=5). These data begin to reveal the finite cellular and sub-cellular processing capacity of the lateral amygdala, and should facilitate efforts to understand mechanisms of plasticity in LA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auditory fear conditioning is dependent on auditory signaling from the medial geniculate (MGm) and the auditory cortex (TE3) to principal neurons of the lateral amygdala (LA). Local circuit GABAergic interneurons are known to inhibit LA principal neurons via fast and slow IPSP's. Stimulation of MGm and TE3 produces excitatory post-synaptic potentials in both LA principal and interneurons, followed by inhibitory post-synaptic potentials. Manipulations of D1 receptors in the lateral and basal amygdala modulate the retrieval of learned association between an auditory CS and foot shock. Here we examined the effects of D1 agonists on GABAergic IPSP's evoked by stimulation of MGm and TE3 afferents in vitro. Whole cell patch recordings were made from principal neurons of the LA, at room temperature, in coronal brain slices using standard methods. Stimulating electrodes were placed on the fiber tracts medial to the LA and at the external capsule/layer VI border dorsal to the LA to activate (0.1-0.2mA) MGm and TE3 afferents respectively. Neurons were held at -55.0 mV by positive current injection to measure the amplitude of the fast IPSP. Changes in input resistance and membrane potential were measured in the absence of current injection. Stimulation of MGm or TE3 afferents produced EPSP's in the majority of principal neurons and in some an EPSP/IPSP sequence. Stimulation of MGm afferents produced IPSP's with amplitudes of -2.30 ± 0.53 mV and stimulation of TE3 afferents produced IPSP's with amplitudes of -1.98 ± 1.26 mV. Bath application of 20μM SKF38393 increased IPSP amplitudes to -5.94 ± 1.62 mV (MGm, n=3) and-5.46 ± 0.31 mV (TE3, n=3). Maximal effect occurred <10mins. A small increase in resting membrane potential and decrease in input resistance were observed. These data suggest that DA modulates both the auditory thalamic and auditory cortical inputs to the LA fear conditioning circuit via local GABAergic circuits. Supported by NIMH Grants 00956, 46516, and 58911.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. Methods We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI’s least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Results Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Conclusions Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinically, the Cobb angle method measures the overall scoliotic curve in the coronal plane but does not measure individual vertebra and disc wedging. The contributions of the vertebrae and discs in the growing scoliotic spine were measured using sequential MRI scans to investigate coronal plane deformity progression with growth. Sequential MRI data showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in overall Cobb angle measure; the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background We examined pituitary volume before the onset of psychosis in subjects who were at ultra-high risk (UHR) for developing psychosis. Methods Pituitary volume was measured on 1.5-mm, coronal, 1.5-T magnetic resonance images in 94 UHR subjects recruited from admissions to the Personal Assessment and Crisis Evaluation Clinic in Melbourne, Australia and in 49 healthy control subjects. The UHR subjects were scanned at baseline and were followed clinically for a minimum of 1 year to detect transition to psychosis. Results Within the UHR group, a larger baseline pituitary volume was a significant predictor of future transition to psychosis. The UHR subjects who later went on to develop psychosis (UHR-P, n = 31) had a significantly larger (+12%; p = .001) baseline pituitary volume compared with UHR subjects who did not go on to develop psychosis (UHR-NP, n = 63). The survival analysis conducted by Cox regression showed that the risk of developing psychosis during the follow-up increased by 20% for every 10% increase in baseline pituitary volume (p = .002). Baseline pituitary volume of the UHR-NP subjects was smaller not only compared with UHR-P (as described above) but also compared with control subjects (−6%; p = .032). Conclusions The phase before the onset of psychosis is associated with a larger pituitary volume, suggesting activation of the HPA axis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Clinically, the Cobb angle method measures the overall scoliotic curve in the coronal plane but does not measure individual vertebra and disc wedging. The contributions of the vertebrae and discs in the growing scoliotic spine were measured to investigate coronal plane deformity progression with growth. Methods A 0.49mm isotropic 3D MRI technique was developed to investigate the level-by-level changes that occur in the growing spine of a group of Adolescent Idiopathic Scoliosis (AIS) patients, who received two to four sequential scans (spaced 3-12 months apart). The coronal plane wedge angles of each vertebra and disc in the major curve were measured to capture any changes that occurred during their adolescent growth phase. Results Seventeen patients had at least two scans. Mean patient age was 12.9 years (SD 1.5 years). Sixteen were classified as right-sided major thoracic Lenke Type 1 (one left sided). Mean standing Cobb angle at initial presentation was 31° (SD 12°). Six received two scans, nine three scans and two four scans, with 65% showing a Cobb angle progression of 5° or more between scans. Overall, there was no clear pattern of deformity progression of individual vertebrae and discs, nor between patients who progressed and those who didn’t. There were measurable changes in the wedging of the vertebrae and discs in all patients. In sequential scans, change in direction of wedging was also seen. In several patients there was reverse wedging in the discs that counteracted increased wedging of the vertebrae such that no change in overall Cobb angle was seen. Conclusion Sequential MRI data showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in Cobb angle measure; the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Spinal flexibility measurement is an important aspect of pre-operative clinical assessment in the treatment of Adolescent Idiopathic Scoliosis (AIS). Clinically, curve flexibility is a combined measure for all vertebral levels. We propose that in vivo flexibility for individual spinal joints could provide valuable additional information in planning treatment for scoliosis. Methods. Individual spinal joint flexibility in the coronal plane was measured for a series of AIS patients using axially loaded magnetic resonance imaging. Each patient underwent magnetic resonance imaging in the supine position, with no axial load, and then following application of an axial compressive load equal to half the patient’s bodyweight. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. Results. Fifteen AIS patients were included in the study (mean clinical Cobb angle 46 degrees, mean age 15.3 years). Mean intra-observer measurement error for endplate inclination was 1.6˚. The mean increase in measured major Cobb angle between unloaded and loaded scans was 7.6˚. For certain spinal levels (+2,+1,-2 relative to the apex) there was a statistically significant relationship between change in wedge angle under load and initial wedge angle, such that initially highly wedged discs demonstrated a smaller change in wedge angle than less wedged discs. Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. Conclusion. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics in AIS. Knowledge of individual joint flexibility may assist surgeons to determine which spinal procedure is most appropriate for a patient, which levels should be included in a spinal fusion and the relative mobility of individual joints in the deformed region of the spine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION. Clinically, the Cobb angle method measures the overall scoliotic curve in the coronal plane but does not measure individual vertebra and disc wedging. The contributions of the vertebrae and discs in the growing scoliotic spine were measured to investigate coronal plane deformity progression with growth. METHODS. A 0.49mm isotropic 3D MRI technique was developed to investigate the level-by-level changes that occur in the growing spine of a group of Adolescent Idiopathic Scoliosis (AIS) patients, who received two to four sequential scans (spaced 3-12 months apart). The coronal plane wedge angles of each vertebra and disc in the major curve were measured to capture any changes that occurred during their adolescent growth phase. RESULTS. Seventeen patients had at least two scans. Mean patient age was 12.9 years (SD 1.5 years). Sixteen were classified as right-sided major thoracic Lenke Type 1 (one left sided). Mean standing Cobb angle at initial presentation was 31° (SD 12°). Six received two scans, nine three scans and two four scans, with 65% showing a Cobb angle progression of 5° or more between scans. Overall, there was no clear pattern of deformity progression of individual vertebrae and discs, nor between patients who progressed and those who didn’t. There were measurable changes in the wedging of the vertebrae and discs in all patients. In sequential scans, change in direction of wedging was also seen. In several patients there was reverse wedging in the discs that counteracted increased wedging of the vertebrae such that no change in overall Cobb angle was seen. CONCLUSION. Sequential MRI data showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in Cobb angle measure; the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinically, the Cobb angle method measures the overall scoliotic curve in the coronal plane but does not measure individual vertebra and disc wedging. The contributions of the vertebrae and discs in the growing scoliotic spine were measured to investigate coronal plane deformity progression with growth. Sequential MRI data in this project showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in Cobb angle measure; the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.