126 resultados para Concentration actions
Resumo:
Objective It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.
Resumo:
Extensive international research points to an association between changed work arrangements, especially those commonly labelled as contingent work, with adverse occupational health and safety (OHS) outcomes. Research also indicates these work arrangements have weakened or bypassed existing OHS and workers’ compensation regulatory regimes. However, there has been little if any research into how OHS inspectors perceive these issues and how they address them during workplace visits or investigations. Between 2003 and 2007 research was undertaken that entailed detailed documentary and statistical analysis, extended interviews with 170 regulatory managers and inspectors, and observational data collected while accompanying inspectors on 118 ‘typical’ workplace visits. Key findings are that inspectors responsible for a range of industries see altered work arrangements as a serious challenge, especially labour hire (agency work) and subcontracting. Though the law imposes clear obligations, inspectors identified misunderstanding/blameshifting and poor compliance amongst parties to these arrangements. The complexity of these work arrangements also posed logistical challenges to inspectorates.
Resumo:
The decision of Evans v Robcorp Pty Ltd[2014] QSC 26 is of interest as being an instance where the defence of hardship, in this case, financial hardship, was successfully pleaded in defence to a summary application for specific performance of a contract for the sale of land. Equity has always recognised the defence of hardship in response to an action for specific performance which, as an equitable remedy, might be refused in the discretion of the Court (Hewett v Court (1983) 149 CLR 639 at 664). However, whilst the remedy is discretionary, there are certain accepted principles which have guided the courts in their application of this defence to particular facts. It is not a blanket defence to a claim for specific performance where the buyer simply does not have the funds to complete the contract at the time when settlement is called for. Occasionally, a radical change in, say for instance, the health of the defendant between contract and completion, perhaps coupled with a long delay by a seller in calling for completion not being the fault of the buyer might enliven the defence (Patel v Ali [1984]1 Ch 283)
Resumo:
This study examines the role that the size of a victimised organisation and the size of the victim’s loss have on attitudes regarding the acceptance or unacceptance of 12 questionable consumer actions. A sample of 815 American adults rated each scenario on a scale anchored by very acceptable and very unacceptable. It was shown that the size of the victimised organisation tends to influence consumers’ opinions with more disdain directed towards consumers who take advantage of smaller businesses. Similarly, the respondents tended to be more critical of these actions when the loss incurred by the victimised organisation was large. A 2x2 matrix concurrently delineated the nature of the extent to which opinions regarding the 12 actions differed depending upon the mediating variable under scrutiny.
Resumo:
GABAB receptors regulate the intracellular Ca2+ concentration ([Ca2+]i) in a number of cells (e.g., retina, airway epithelium and smooth muscle), but whether they are expressed in vascular endothelial cells and similarly regulate the [Ca2+]i is not known. The purpose of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter γ-aminobutyric acid (GABA), in cultured human aortic endothelial cells (HAECs), and to explore if altering receptor activation modified [Ca2+]i and endothelial nitric oxide synthase (eNOS) translocation. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABAB1 and GABAB2 in cultured HAECs. The effects of GABAB receptors on [Ca2+]i in cultured HAECs were demonstrated using fluo-3. The influence of GABAB receptors on eNOS translocation was assessed by immunocytochemistry. Both GABAB1 and GABAB2 mRNA and protein were expressed in cultured HAECs, and the GABAB1 and GABAB2 proteins were colocated in the cell membrane and cytoplasm. One hundred μM baclofen caused a transient increase of [Ca2+]i and eNOS translocation in cultured HAECs, and the effects were attenuated by pretreatment with the selective GABAB receptor antagonists CGP46381 and CGP55845. GABAB receptors are expressed in HAECs and regulate the [Ca2+]i and eNOS translocation. Cultures of HAECs may be a useful in vitro model for the study of GABAB receptors and vascular biology.
Resumo:
The aim of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter gamma-aminobutyric acid (GABAB), in human aortic smooth muscle cells (HASMCs), and to explore if altering receptor activation modified intracellular Ca(2+) concentration ([Ca(2+)]i) of HASMCs. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABABR1 and GABABR2 in cultured HASMCs. Immunohistochemistry was used to localize the two subunits in human left anterior descending artery (LAD). The effects of the GABAB receptor agonist baclofen on [Ca(2+)]i in cultured HASMCs were demonstrated using fluo-3. Both GABABR1 and GABABR2 mRNA and protein were identified in cultured HASMCs and antibody staining was also localized to smooth muscle cells of human LAD. 100 μM baclofen caused a transient increase of [Ca(2+)]i in cultured HASMCs regardless of whether Ca(2+) was added to the medium, and the effects were inhibited by pre-treatment with CGP46381 (selective GABAB receptor antagonist), pertussis toxin (a Gi/o protein inhibitor), and U73122 (a phospholipase C blocker). GABAB receptors are expressed in HASMCs and regulate the [Ca(2+)]i via a Gi/o-coupled receptor pathway and a phospholipase C activation pathway
Resumo:
Leucine is a key amino acid for initiating translation in muscle cells, but the dose-dependent effects of leucine on intracellular signaling are poorly characterized. This study examined the effect that increasing doses of leucine would have on changes in mechanistic target of rapamycin (mTOR)–mediated signaling, rates of protein synthesis, and cell size in C2C12 cells. We hypothesized that a leucine “threshold” exists, which represents the minimum stimulus required to initiate mTOR signaling in muscle cells. Acute exposure to 1.5, 3.2, 5.0, and 16.1 mM leucine increased phosphorylation of mTORSer2448 (~1.4-fold; P < .04), 4E-BP1 Thr37/46 (~1.9-fold; P < .001), and rpS6Ser235/6 (~2.3-fold; P < .001). However, only p70S6kThr389 exhibited a dose-dependent response to leucine with all treatments higher than control (~4-fold; P < .001) and at least 5 mM higher than the 1.5-mM concentration (1.2-fold; P < .02). Rates of protein synthesis were not altered by any treatment. Seven days of exposure to 0.5, 1.5, 5.0, and 16.5 mM leucine resulted in an increase in cell size in at least 5 mM treatments (~1.6-fold, P < .001 vs control). Our findings indicate that even at low leucine concentrations, phosphorylation of proteins regulating translation initiation signaling is enhanced. The phosphorylation of p70S6kThr389 follows a leucine dose-response relationship, although this was not reflected by the acute protein synthetic response. Nevertheless, under the conditions of the present study, it appears that leucine concentrations of at least 5 mM are necessary to enhance cell growth.
Resumo:
We show that the cluster ion concentration (CIC) in the atmosphere is significantly suppressed during events that involve rapid increases in particle number concentration (PNC). Using a neutral cluster and air ion spectrometer, we investigated changes in CIC during three types of particle enhancement processes – new particle formation, a bushfire episode and an intense pyrotechnic display. In all three cases, the total CIC decreased with increasing PNC, with the rate of decrease being greater for negative CIC than positive. We attribute this to the greater mobility, and hence the higher attachment coefficient, of negative ions over positive ions in the air. During the pyrotechnic display, the rapid increase in PNC was sufficient to reduce the CIC of both polarities to zero. At the height of the display, the negative CIC stayed at zero for a full 10 min. Although the PNCs were not significantly different, the CIC during new particle formation did not decrease as much as during the bushfire episode and the pyrotechnic display. We suggest that the rate of increase of PNC, together with particle size, also play important roles in suppressing CIC in the atmosphere.
Resumo:
1. The vasodilator effects of adenosine receptor agonists, isoprenaline and histamine were examined in perfused heart preparations from young (4–6 weeks) and mature (12–20 weeks) rats. 2. Adenosine induced a biphasic concentration-dependent decrease in KCl (35 mM) raised coronary perfusion pressure in hearts from young and mature rats, suggesting the presence of both high- and low-affinity sites for adenosine receptors in the two age groups tested. In heart preparations from mature rats, vasodilator responses to adenosine were significantly reduced compared with responses observed in young rats. 3. Responses to 5′-N-ethylcarboxamidoadenosine (NECA) and 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680) were reduced in preparations from mature rats, whereas the vasodilator actions of N6-cyclopentyladenosine (CPA) and N6-2-(4-aminophenyl)ethyladenosine (APNEA) did not change with age. 4. The results presented in this study suggest that several adenosine receptor subtypes mediate vasodilator responses in the coronary circulation of the rat and that a reduction in response to adenosine with age may be due to changes in the high-affinity receptor site.
Resumo:
We identified the active ingredients in people’s visions of society’s future (“collective futures”) that could drive political behavior in the present. In eight studies (N = 595), people imagined society in 2050 where climate change was mitigated (Study 1), abortion laws relaxed (Study 2), marijuana legalized (Study 3), or the power of different religious groups had increased (Studies 4-8). Participants rated how this future society would differ from today in terms of societal-level dysfunction and development (e.g., crime, inequality, education, technology), people’s character (warmth, competence, morality), and their values (e.g., conservation, self-transcendence). These measures were related to present-day attitudes/intentions that would promote/prevent this future (e.g., act on climate change, vote for a Muslim politician). A projection about benevolence in society (i.e., warmth/morality of people’s character) was the only dimension consistently and uniquely associated with present-day attitudes and intentions across contexts. Implications for social change theories, political communication, and policy design are discussed.
Resumo:
Organic solvents are commonly used in ink precursors of Cu2ZnSnS4 (CZTS) nanocrystals to make thin films for applications such as solar cells. However, the traces of carbon residual left behind by the organic solvents after high-temperature annealing is generally considered to restrict the growth of nanocrystals to form large grains. This work reported the first systematic study on the influence of carbon content of organic solvents on the grain growth of CZTS nanomaterial during high temperature sulfurization annealing. Solvents with carbon atom per molecule varying from 3 to 10 were used to made ink of CZTS nanocrystals for thin film deposition. It has been found that, after high temperature sulfurization annealing, a bilayer structure was formed in the CZTS film using organic solvent containing 3 carbon atoms per solvent molecule based on glycerol and 1,3-propanediol. The top layer consisted of closelypacked large grains and the bottom layer was made of as-synthesized nanoparticles. In contrast, the CZTS film made with the solvent molecule with more carbon atoms including 1,5-pentanediol (5 carbon atoms) and 1,7-heptanediol (7 carbon atoms) consisted of nanoparticles embedded with large crystals. It is believed that the carbon residues left behind by the organic solvents affected the necking of CZTS nanocrystals to form large grains through influencing the surface property of nanocrystals. Furthermore, it has also been observed that the solvent affected the thickness of MoS2 layer which was formed between CZTS and Mo substrate. A thinner MoS2 film (50 nm) was obtained with the slurry using carbon-rich terpineol as solvent whereas the thickest MoS2 (350 nm) was obtained with the film made from 1,3-propanediol based solvent. The evaluation of the photoactivity of the CZTS thin films has demonstrated that a higher photocurrent was generated with the film containing more large grains.
Resumo:
In this study, effects of concentrations of Cu(II), Zn(II) and Sn(II) ions in the electrolytic bath solution on the properties of electrochemically deposited CuZnSn (CZT) films were investigated. Study of the composition of a CZT film has shown that the metallic content (relative atomic ratio) in the film increased linearly with increase in the metal ion concentration. It is the first time that the relationship of the compositions of the alloy phases in the co-electrodeposited CZT film with the concentration of metal ions has been revealed. The results have confirmed that the formation and content of Cu6Sn5 and Cu5Zn8 alloy phases in the film were directly controlled by the concentration of Cu(II). SEM measurements have shown that Sn(II) has significant impact on film morphology, which became more porous as a result of the larger nucleation size of tin. The changes in the surface properties of the films was also confirmed by chronoamperometry characteristic (i–t) deposition curves. By optimization of metal ion concentrations in the electrolyte solution, a copper-poor and zinc-rich kesterite Cu2ZnSnS4 (CZTS) film was synthesized by the sulfurization of the deposited CZT film. The solar cell with the CZTS film showed an energy conversion efficiency of 2.15% under the illumination intensity of 100 mW cm 2.