309 resultados para Beam angle selection
Resumo:
A method of selecting land in any region of Queensland for offsetting purposes is devised, employing uniform standards. The procedure first requires that any core natural asset lands, Crown environmental lands, prime urban and agricultural lands, and highly contentious sites in the region be eliminated from consideration. Other land is then sought that is located between existing large reservations and the centre of greatest potential regional development/disturbance. Using the criteria of rehabilitation (rather than preservation) plus proximity to those officially defined Regional Ecosystems that are most threatened, adjacent sites that are described as ‘Cleared’ are identified in terms of agricultural land capability. Class IV lands – defined as those ‘which may be safely used for occasional cultivation with careful management’,2 ‘where it is favourably located for special usage’,3 and where it is ‘helpful to those who are interested in industry or regional planning or in reconstruction’4 – are examined for their appropriate area, for current tenure and for any conditions such as Mining Leases that may exist. The positive impacts from offsets on adjoining lands can then be designed to be significant; examples are also offered in respect of riparian areas and of Marine Parks. Criteria against which to measure performance for trading purposes include functional lift, with other case studies about this matter reported separately in this issue. The procedure takes no account of demand side economics (financial additionality), which requires commercial rather than environmental analysis.
Resumo:
This paper studies interfacial debonding behavior of composite beams which include piezoelectric materials, adhesive and host beam. The focus is put on crack initiation and growth of the piezoelectric adhesive interface. Closed-form solutions of interface stresses and energy release rates are obtained for adhesive layer in the piezoelectric composite beams. Finite element analyses have been carried out to study the initiation and growth of interfaces crack for piezoelectric beams with interface element by ANSYS, in which the interface element of FE model is based on the cohesive zone models to characterize the fracture behavior of the interfacial debonding. The results have been compared with analystical solution, and the influence of different geometry and material parameters on the interfacial behavior of piezoelectric composite beams have been discussed.
Resumo:
ABSTRACT Twelve beam-to-column connections between cold-formed steel sections consisting of three beam depths and four connection types were tested in isolation to investigate their behavior based on strength, stiffness and ductility. Resulting moment-rotation curves indicate that the tested connections are efficient moment connections where moment capacities ranged from about 65% to 100% of the connected beam capac-ity. With a moment capacity of greater than 80% of connected beam member capacity, some of the connec-tions can be regarded as full strength connections. Connections also possessed sufficient ductility with rota-tions of 20 mRad at failure although some connections were too ductile with rotations in excess of 30 mRad. Generally, most of the connections possess the strength and ductility to be considered as partial strength con-nections. The ultimate failures of almost all of the connections were due to local buckling of the compression web and flange elements of the beam closest to the connection.
Resumo:
The LiteSteel beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSBs are commonly used as flexural members in buildings. However, the LSB flexural members are subjected to lateral distortional buckling, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist, and cross sectional change due to web distortion. An experimental study including more than 50 lateral buckling tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. It included the available 13 LSB sections with spans ranging from 1200 to 4000 mm. Lateral buckling tests based on a quarter point loading were conducted using a special test rig designed to simulate the required simply supported and loading conditions accurately. Experimental moment capacities were compared with the predictions from the design rules in the Australian cold-formed steel structures standard. The new design rules in the standard were able to predict the moment capacities more accurately than previous design rules. This paper presents the details of lateral distortional buckling tests, in particular the features of the lateral buckling test rig, the results and the comparisons. It also includes the results of detailed studies into the mechanical properties and residual stresses of LSBs.
Resumo:
Some of my most powerful spiritual experiences have come from the splendorous and sublime sounding hymns performed by a choir and church organ at the traditional Anglican church I’ve attended since I was very young. In the later stage of my life, my pursuit of education in the field of engineering caused me to move to Australia where I regularly attended a contemporary evangelical church and subsequently became a music director in the faith community. This environmental and cultural shift altered my perception and musical experiences of Christian music and led me to enquire about the relationship between Christian liturgy and church music. Throughout history church musicians and composers have synthesised the theological, congregational, cultural and musical aspects of church liturgy. Many great composers have taken into account the conditions surrounding the process of sacred composition and arrangement of music to enhance the experience of religious ecstasy – they sought resonances with Christian values and beliefs to draw congregational participation into the light of praising and glorifying God. As a music director in an evangelical church this aspiration has become one I share. I hope to identify and define the qualities of these resonances that have been successful and apply them to my own practice. Introduction and Structure of the Thesis In this study I will examine four purposively selected excerpts of Christian church vocal music combining theomusicological and semiotic analysis to help identify guidelines that might be useful in my practice as a church music director. The four musical excerpts have been selected based upon their sustained musical and theological impact over time, and their ability to affect ecstatic responses from congregations. This thesis documents a personal journey through analysis of music and uses a context that draws upon ethno-musicological, theological and semiotic tools that lead to a preliminary framework and principles which can then be applied to the identified qualities of resonance in church music today. The thesis is comprised of four parts. Part 1 presents a literature study on the relationship between sacred music, the effects of religious ecstasy and the Christian church. Multiple lenses on this phenomenon are drawn from the viewpoints of prominent western church historians, Biblical theologians, and philosophers. The literature study continues in Part 2, where the role of embodiment is examined from the current perspective of cognitive learning environments. This study offers a platform for a critical reflection on two distinctive musical liturgical systems that have treated differently the notion of embodied understanding amidst a shifting church paradigm. This allows an in-depth theological and philosophical understanding of the liturgical conditions around sacred music-making that relates to the monistic and dualistic body/mind. Part 3 involves undertaking a theomusicological methodology that utilises creative case studies of four purposively selected spiritual pieces. A semiotic study focuses on specific sections of sacred vocal works that express the notions of ‘praise’ and ‘glorification’, particularly in relation to these effects,which combine an analysis of theological perspectives around religious ecstasy and particular spiritual themes. Part 4 presents the critiques and findings gathered from the study that incorporate theoretical and technological means to analyse the purposive selected musical artefact, particularly with the sonic narratives expressing notions of ‘Praise' and 'Glory’. The musical findings are further discussed in relation to the notion of resonance, and then a conceptual framework for the role of contemporary musicdirector is proposed. The musical and Christian terminologies used in the thesis are explained in the glossary, and the appendices includes tables illustrating the musical findings, conducted surveys, written musical analyses and audio examples of selected sacred pieces available on the enclosed compact disc.
Resumo:
Green energy is one of the key factors, driving down electricity bill and zero carbon emission generating electricity to green building. However, the climate change and environmental policies are accelerating people to use renewable energy instead of coal-fired (convention type) energy for green building that energy is not environmental friendly. Therefore, solar energy is one of the clean energy solving environmental impact and paying less in electricity fee. The method of solar energy is collecting sun from solar array and saves in battery from which provides necessary electricity to whole house with zero carbon emission. However, in the market a lot of solar arrays suppliers, the aims of this paper attempted to use superiority and inferiority multi-criteria ranking (SIR) method with 13 constraints establishing I-flows and S-flows matrices to evaluate four alternatives solar energies and determining which alternative is the best, providing power to sustainable building. Furthermore, SIR is well-known structured approach of multi-criteria decision support tools and gradually used in construction and building. The outcome of this paper significantly gives an indication to user selecting solar energy.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.