172 resultados para BORON 10


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study assessed the workday step counts of lower active (<10,000 daily steps) university employees using an automated, web-based walking intervention (Walk@Work). METHODS: Academic and administrative staff (n=390; 45.6±10.8years; BMI 27.2±5.5kg/m2; 290 women) at five campuses (Australia [x2], Canada, Northern Ireland and the United States), were given a pedometer, access to the website program (2010-11) and tasked with increasing workday walking by 1000 daily steps above baseline, every two weeks, over a six week period. Step count changes at four weeks post intervention were evaluated relative to campus and baseline walking. RESULTS: Across the sample, step counts significantly increased from baseline to post-intervention (1477 daily steps; p=0.001). Variations in increases were evident between campuses (largest difference of 870 daily steps; p=0.04) and for baseline activity status. Those least active at baseline (<5000 daily steps; n=125) increased step counts the most (1837 daily steps; p=0.001), whereas those most active (7500-9999 daily steps; n=79) increased the least (929 daily steps; p=0.001). CONCLUSIONS: Walk@Work increased workday walking by 25% in this sample overall. Increases occurred through an automated program, at campuses in different countries, and were most evident for those most in need of intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practical number of charge carriers loaded is crucial to the evaluation of the capacity performance of carbon-based electrodes in service, and cannot be easily addressed experimentally. In this paper, we report a density functional theory study of charge carrier adsorption onto zigzag edge-shaped graphene nanoribbons (ZGNRs), both pristine and incorporating edge substitution with boron, nitrogen or oxygen atoms. All edge substitutions are found to be energetically favorable, especially in oxidized environments. The maximal loading of protons onto the substituted ZGNR edges obeys a rule of [8-n-1], where n is the number of valence electrons of the edge-site atom constituting the adsorption site. Hence, a maximum charge loading is achieved with boron substitution. This result correlates in a transparent manner with the electronic structure characteristics of the edge atom. The boron edge atom, characterized by the most empty p band, facilitates more than the other substitutional cases the accommodation of valence electrons transferred from the ribbon, induced by adsorption of protons. This result not only further confirms the possibility of enhancing charge storage performance of carbon-based electrochemical devices through chemical functionalization but also, more importantly, provides the physical rationale for further design strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heteroatom doping on the edge of graphene may serve as an effective way to tune chemical activity of carbon-based electrodes with respect to charge carrier transfer in an aqueous environment. In a step towards developing mechanistic understanding of this phenomenon, we explore herein mechanisms of proton transfer from aqueous solution to pristine and doped graphene edges utilizing density functional theory. Atomic B-, N-, and O- doped edges as well as the native graphene are examined, displaying varying proton affinities and effective interaction ranges with the H3O+ charge carrier. Our study shows that the doped edges characterized by more dispersive orbitals, namely boron and nitrogen, demonstrate more energetically favourable charge carrier exchange compared with oxygen, which features more localized orbitals. Extended calculations are carried out to examine proton transfer from the hydronium ion in the presence of explicit water, with results indicating that the basic mechanistic features of the simpler model are unchanged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meyerhofferite is a calcium hydrated borate mineral with ideal formula: CaB3O3(OH)5�H2O and occurs as white complex acicular to crude crystals with length up to �4 cm, in fibrous divergent, radiating aggregates or reticulated and is often found in sedimentary or lake-bed borate deposits. The Raman spectrum of meyerhofferite is dominated by intense sharp band at 880 cm�1 assigned to the symmetric stretching mode of trigonal boron. Broad Raman bands at 1046, 1110, 1135 and 1201 cm�1 are attributed to BOH in-plane bending modes. Raman bands in the 900–1000 cm�1 spectral region are assigned to the antisymmetric stretching of tetrahedral boron. Distinct OH stretching Raman bands are observed at 3400, 3483 and 3608 cm�1. The mineral meyerhofferite has a distinct Raman spectrum which is different from the spectrum of other borate minerals, making Raman spectroscopy a very useful tool for the detection of meyerhofferite in sedimentary and lake bed deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multilamellar structure of phospholipids, i.e. the surface amorphous layer (SAL) that covers the natural surface of articular cartilage, and hexagonal boron nitride (h-BN) on the surface of metal porous bearings are two prominent examples of the family of layered materials that possess the ability to deliver lamellar lubrication. This chapter presents the friction study that was conducted on the surfaces of cartilage and the metal porous bearing impregnated with oil (first generation) and with oil + h-BN (second generation). The porosity of cartilage is around 75% and those of metal porous bearings were 15–28 wt%. It is concluded that porosity is a critical factor in facilitating the excellent tribological properties of both articular cartilage and the porous metal bearings studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over a seven-year period, Mark Radvan directed a suite of children’s theatre productions adapted from the original Tashi stories by Australian writers Anna and Barbara Fienberg. The Tashi Project’s repertoire of plays performed to over 40,000 children aged between 3 and 10 years old, and their carers, in seasons at the Out of the Box Festival, at Brisbane Powerhouse and in venues across Australia in two interstate tours in 2009 and 2010. The project investigated how best to combine an exploration of theatrical forms and conventions, with a performance style evolved in a specially developed training program and a deliberate positioning of young children as audiences capable of sophisticated readings of action, symbol, theme and character. The results of this project show that when brought into appropriate relationship with the theatre artists, young children aged 3-5 can engage with sophisticated narrative forms, and with the right contextual framing they enjoy heightened dramatic and emotional tension, bringing to the event sustained and highly engaged concentration. Older children aged 6-10 also bring sustained and heightened engagement to the same stories, providing that other more sophisticated dramatic elements are woven into the construction of the performances, such as character, theme and style.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We predict here from first-principle calculations that finite-length (n,0) single walled carbon nanotubes (SWCNTs) with H-termination at the open ends displaying antiferromagnetic coupling when n is greater than 6. An opposite local gating effect of the spin states, i.e., half metallicity, is found under the influence of an external electric field along the direction of tube axis. Remarkably, boron doping of unpassivated SWCNTs at both zigzag edges is found to favor a ferromagnetic ground state, with the B-doped tubes displaying half-metallic behavior even in the absence of an electric field. Aside of the intrinsic interest of these results, an important avenue for development of CNT-based spintronic is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an overview of NTCIR-10 Cross-lingual Link Discovery (CrossLink-2) task. For the task, we continued using the evaluation framework developed for the NTCIR-9 CrossLink-1 task. Overall, recommended links were evaluated at two levels (file-to-file and anchor-to-file); and system performance was evaluated with metrics: LMAP, R-Prec and P@N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At NTCIR-10 we participated in the cross-lingual link discovery (CrossLink-2) task. In this paper we describe our systems for discovering cross-lingual links between the Chinese, Japanese, and Korean (CJK) Wikipedia and the English Wikipedia. The evaluation results show that our implementation of the cross-lingual linking method achieved promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a large number of boron containing minerals with water and/or hydroxyl units of which pinnoite MgB2O(OH)6 is one. Some discussion about the molecular structure of pinnoite exists in the literature. Whether water is involved in the structure is ill-determined. The molecular structure of pinnoite has been assessed by the combination of Raman and infrared spectroscopy. The Raman spectrum is characterized by an intense band at 900 cm−1 assigned to the BO stretching vibrational mode. A series of bands in the 1000–1320 cm−1 spectral range are attributed to BO antisymmetric stretching modes and in-plane bending modes. The infrared spectrum shows complexity in this spectral range. Multiple Raman OH stretching vibrations are found at 3179, 3399, 3554 and 3579 cm−1. The infrared spectrum shows a series of overlapping bands with bands identified at 3123, 3202, 3299, 3414, 3513 and 3594 cm−1. By using a Libowitzky type function, hydrogen bond distances were calculated. Two types of hydrogen bonds were identified based upon the hydrogen bond distance. It is important to understand the structure of pinnoite in order to form nanomaterials based upon the pinnoite structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Chaperonin 10 (Cpn10) is a mitochondrial molecule involved in protein folding. The aim of this study was to determine the safety profile of Cpn10 in patients with multiple sclerosis (MS). Methods A total of 50 patients with relapse-remitting or secondary progressive MS were intravenously administered 5 mg or 10 mg of Cpn10 weekly for 12 weeks in a double-blind, randomized, placebo controlled, phase II trial. Clinical reviews, including Expanded Disability Status Scale and magnetic resonance imaging (MRI) with Gadolinium, were undertaken every 4 weeks. Stimulation of patient peripheral blood mononuclear cells with lipopolysaccharide ex vivo was used to measure the in vivo activity of Cpn10. Results No significant differences in the frequency of adverse events were seen between treatment and placebo arms. Leukocytes from both groups of Cpn10-treated patients produced significantly lower levels of critical proinflammatory cytokines. A trend toward improvement in new Gadolinium enhancing lesions on MRI was observed, but this difference was not statistically significant. No differences in clinical outcome measures were seen. Conclusions Cpn10 is safe and well tolerated when administered to patients with MS for 3 months, however, a further extended phase II study primarily focused on efficacy is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Democratic governments raise taxes and charges and spend revenue on delivering peace, order and good government. The delivery process begins with a legislature as that can provide a framework of legally enforceable rules enacted according to the government’s constitution. These rules confer rights and obligations that allow particular people to carry on particular functions at particular places and times. Metadata standards as applied to public records contain information about the functioning of government as distinct from the non-government sector of society. Metadata standards apply to database construction. Data entry, storage, maintenance, interrogation and retrieval depend on a controlled vocabulary needed to enable accurate retrieval of suitably catalogued records in a global information environment. Queensland’s socioeconomic progress now depends in part on technical efficiency in database construction to address queries about who does what, where and when; under what legally enforceable authority; and how the evidence of those facts is recorded. The Survey and Mapping Infrastructure Act 2003 (Qld) addresses technical aspects of where questions – typically the officially recognised name of a place and a description of its boundaries. The current 10-year review of the Survey and Mapping Regulation 2004 provides a valuable opportunity to consider whether the Regulation makes sense in the context of a number of later laws concerned with management of Public Sector Information (PSI) as well as policies for ICT hardware and software procurement. Removing ambiguities about how official place names are to be regarded on a whole-of-government basis can achieve some short term goals. Longer-term goals depend on a more holistic approach to information management – and current aspirations for more open government and community engagement are unlikely to occur without such a longer-term vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH)⋅5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [B3O3(OH)5]2-[B3O3(OH)5]2- soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm−1 are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm−1 are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm−1 with sharper bands at 3459, 3530 and 3562 cm−1 assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite.