171 resultados para At-fault crash


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the 9th April 1955, RAAF Lincoln Bomber A73-64, on a mercy flight to transfer a critically ill infant from Townsville to Brisbane, crashed at Mount Superbus killing the four crew and two civilians on board. The immediate search and rescue was organised by a group of Brisbane bushwalkers who were camping in the area. Police and RAAF personnel subsequently joined the civilians at the crash site to recover the victims. During their initial search of the crash they located what were believed to be the remains of five adults. The arrival of the RAAF Senior Medical Officer (SMO) the following day revealed that only four adult bodies had been found and the bodies of both civilians, an adult and infant, were missing. Later that day the remains of six victims were recovered from the crash site and conveyed to the Warwick Police Station for identification. The RAAF SMO was responsible for the identifications of the aircrew while the Government Medical Officer, police and coroner were responsible for the identifications of the civilians. Eight days later, further remains of the infant were found by a civilian looking through the wreckage. This paper uses archival records not previously researched from a Disaster Victim Identification (DVI) perspective to stimulate interest among forensic practitioners, criminologists and other interested parties in the history of DVI and how practices in Australia have evolved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced substation applications, such as synchrophasors and IEC 61850-9-2 sampled value process buses, depend upon highly accurate synchronizing signals for correct operation. The IEEE 1588 Precision Timing Protocol (PTP) is the recommended means of providing precise timing for future substations. This paper presents a quantitative assessment of PTP reliability using Fault Tree Analysis. Two network topologies are proposed that use grandmaster clocks with dual network connections and take advantage of the Best Master Clock Algorithm (BMCA) from IEEE 1588. The cross-connected grandmaster topology doubles reliability, and the addition of a shared third grandmaster gives a nine-fold improvement over duplicated grandmasters. The performance of BMCA mediated handover of the grandmaster role during contingencies in the timing system was evaluated experimentally. The 1 µs performance requirement of sampled values and synchrophasors are met, even during network or GPS antenna outages. Slave clocks are shown to synchronize to the backup grandmaster in response to degraded performance or loss of the main grandmaster. Slave disturbances are less than 350 ns provided the grandmaster reference clocks are not offset from one another. A clear understanding of PTP reliability and the factors that affect availability will encourage the adoption of PTP for substation time synchronization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Readily accepted knowledge regarding crash causation is consistently omitted from efforts to model and subsequently understand motor vehicle crash occurrence and their contributing factors. For instance, distracted and impaired driving accounts for a significant proportion of crash occurrence, yet is rarely modeled explicitly. In addition, spatially allocated influences such as local law enforcement efforts, proximity to bars and schools, and roadside chronic distractions (advertising, pedestrians, etc.) play a role in contributing to crash occurrence and yet are routinely absent from crash models. By and large, these well-established omitted effects are simply assumed to contribute to model error, with predominant focus on modeling the engineering and operational effects of transportation facilities (e.g. AADT, number of lanes, speed limits, width of lanes, etc.) The typical analytical approach—with a variety of statistical enhancements—has been to model crashes that occur at system locations as negative binomial (NB) distributed events that arise from a singular, underlying crash generating process. These models and their statistical kin dominate the literature; however, it is argued in this paper that these models fail to capture the underlying complexity of motor vehicle crash causes, and thus thwart deeper insights regarding crash causation and prevention. This paper first describes hypothetical scenarios that collectively illustrate why current models mislead highway safety researchers and engineers. It is argued that current model shortcomings are significant, and will lead to poor decision-making. Exploiting our current state of knowledge of crash causation, crash counts are postulated to arise from three processes: observed network features, unobserved spatial effects, and ‘apparent’ random influences that reflect largely behavioral influences of drivers. It is argued; furthermore, that these three processes in theory can be modeled separately to gain deeper insight into crash causes, and that the model represents a more realistic depiction of reality than the state of practice NB regression. An admittedly imperfect empirical model that mixes three independent crash occurrence processes is shown to outperform the classical NB model. The questioning of current modeling assumptions and implications of the latent mixture model to current practice are the most important contributions of this paper, with an initial but rather vulnerable attempt to model the latent mixtures as a secondary contribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to obtain a more compact Superconducting Fault Current limiter (SFCL), a special geometry of core and AC coil is required. This results in a unique magnetic flux pattern which differs from those associated with conventional round core arrangements. In this paper the magnetic flux density within a Fault Current Limiter (FCL) is described. Both experimental and analytical approaches are considered. A small scale prototype of an FCL was constructed in order to conduct the experiments. This prototype comprises a single phase. The analysis covers both the steady state and the short-circuit condition. Simulation results were obtained using commercial software based on the Finite Element Method (FEM). The magnetic flux saturating the cores, leakage magnetic flux giving rise to electromagnetic forces and leakage magnetic flux flowing in the enclosing tank are computed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, some models have been proposed for the fault section estimation and state identification of unobserved protective relays (FSE-SIUPR) under the condition of incomplete state information of protective relays. In these models, the temporal alarm information from a faulted power system is not well explored although it is very helpful in compensating the incomplete state information of protective relays, quickly achieving definite fault diagnosis results and evaluating the operating status of protective relays and circuit breakers in complicated fault scenarios. In order to solve this problem, an integrated optimization mathematical model for the FSE-SIUPR, which takes full advantage of the temporal characteristics of alarm messages, is developed in the framework of the well-established temporal constraint network. With this model, the fault evolution procedure can be explained and some states of unobserved protective relays identified. The model is then solved by means of the Tabu search (TS) and finally verified by test results of fault scenarios in a practical power system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Queensland Government has implemented strategies promoting a shift from individual car use to active transport, a transition which requires drivers to adapt to sharing the road with increased numbers of people cycling through transport network. For this to occur safely, changes in both road infrastructure and road user expectations and behaviors will be needed. Creating separate cycle infrastructure does not remove the need for cyclists to commence, cross or finish travel on shared roads. Currently intersections are one of the predominant shared road spaces where crashes result in cyclists being injured or killed. This research investigates how Brisbane cyclists and drivers perceive risk when interacting with other road users at intersections. The current study replicates a French study conducted by co-authors Chaurand and Delhomme in 2011 and extends it to assess gender effects which have been reported in other Australian cycling research. An online survey was administered to experienced cyclists and drivers. Participants rated the level of risk they felt when imagining a number of different road situations. Based on the earlier French study it is expected that perceived crash risk will be influenced both by the participant’s mode of travel and the type of interacting vehicle and perceived risk will be greater when the interaction is with a car than a bicycle. It is predicted that risk perception will decrease as the level of experience increases and that male participants will have a higher perception of skill and lower perception of risk than females. The findings of this Queensland study will provide a valuable insight into perceived risk and the traffic behaviours of drivers and cyclists when interacting with other road users and results will be available for presentation at the Congress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Series reactors are used in distribution grids to reduce the short-circuit fault level. Some of the disadvantages of the application of these devices are the voltage drop produced across the reactor and the steep front rise of the transient recovery voltage (TRV), which generally exceeds the rating of the associated circuit breaker. Simulations were performed to compare the characteristics of a saturated core High-Temperature Superconducting Fault Current Limiter (HTS FCL) and a series reactor. The design of the HTS FCL was optimized using the evolutionary algorithm. The resulting Pareto frontier curve of optimum solution is presented in this paper. The results show that the steady-state impedance of an HTS FCL is significantly lower than that of a series reactor for the same level of fault current limiting. Tests performed on a prototype 11 kV HTS FCL confirm the theoretical results. The respective transient recovery voltages (TRV) of the HTS FCL and an air core reactor of comparable fault current limiting capability are also determined. The results show that the saturated core HTS FCL has a significantly lower effect on the rate of rise of the circuit breaker TRV as compared to the air core reactor. The simulations results are validated with shortcircuit test results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The growing proportion of older adults in Australia is predicted to comprise 23% of the population by 2030. Accordingly, an increasing number of older drivers and fatal crashes of these drivers could also be expected. While the cognitive and physiological limitations of ageing and their road safety implications have been widely documented, research has generally considered older drivers as a homogeneous group. Knowledge of age-related crash trends within the older driver group itself is currently limited. Objective: The aim of this research was to identify age-related differences in serious road crashes of older drivers. This was achieved by comparing crash characteristics between older and younger drivers and between sub-groups of older drivers. Particular attention was paid to serious crashes (crashes resulting in hospitalisation and fatalities) as they place the greatest burden on the Australian health system. Method: Using Queensland Crash data, a total of 191,709 crashes of all-aged drivers (17–80+) over a 9-year period were analysed. Crash patterns of drivers’ aged 17–24, 25–39, 40–49, 50–59, 60–69, 70–79 and 80+ were compared in terms of crash severity (e.g., fatal), at fault levels, traffic control measures (e.g., stop signs) and road features (e.g., intersections). Crashes of older driver sub-groups (60–69, 70–79, 80+) were also compared to those of middle-aged drivers (40–49 and 50–59 combined, who were identified as the safest driving cohort) with respect to crash-related traffic control features and other factors (e.g., speed). Confounding factors including speed and crash nature (e.g., sideswipe) were controlled for. Results and discussion: Results indicated that patterns of serious crashes, as a function of crash severity, at-fault levels, road conditions and traffic control measures, differed significantly between age groups. As a group, older drivers (60+) represented the greatest proportion of crashes resulting in fatalities and hospitalisation, as well as those involving uncontrolled intersections and failure to give way. The opposite was found for middle-aged drivers, although they had the highest proportion of alcohol and speed-related crashes when compared to older drivers. Among all older drivers, those aged 60–69 were least likely to be involved in or the cause of crashes, but most likely to crash at interchanges and as a result of driving while fatigued or after consuming alcohol. Drivers aged 70–79 represented a mid-range level of crash involvement and culpability, and were most likely to crash at stop and give way signs. Drivers aged 80 years and beyond were most likely to be seriously injured or killed in, and at-fault for, crashes, and had the greatest number of crashes at both conventional and circular intersections. Overall, our findings highlight the heterogeneity of older drivers’ crash patterns and suggest that age-related differences must be considered in measures designed to improve older driver safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strike-slip faults commonly display structurally complex areas of positive or negative topography. Understanding the development of such areas has important implications for earthquake studies and hydrocarbon exploration. Previous workers identified the key factors controlling the occurrence of both topographic modes and the related structural styles. Kinematic and stress boundary conditions are of first-order relevance. Surface mass transport and material properties affect fault network structure. Experiments demonstrate that dilatancy can generate positive topography even under simple-shear boundary conditions. Here, we use physical models with sand to show that the degree of compaction of the deformed rocks alone can determine the type of topography and related surface fault network structure in simple-shear settings. In our experiments, volume changes of ∼5% are sufficient to generate localized uplift or subsidence. We discuss scalability of model volume changes and fault network structure and show that our model fault zones satisfy geometrical similarity with natural flower structures. Our results imply that compaction may be an important factor in the development of topography and fault network structure along strike-slip faults in sedimentary basins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooperative Systems provide, through the multiplication of information sources over the road, a lot of potential to improve the assessment of the road risk describing a particular driving situation. In this paper, we compare the performance of a cooperative risk assessment approach against a non-cooperative approach; we used an advanced simulation framework, allowing for accurate and detailed, close-to-reality simulations. Risk is estimated, in both cases, with combinations of indicators based on the TTC. For the non-cooperative approach, vehicles are equipped only with an AAC-like forward-facing ranging sensor. On the other hand, for the cooperative approach, vehicles share information through 802.11p IVC and create an augmented map representing their environment; risk indicators are then extracted from this map. Our system shows that the cooperative risk assessment provides a systematic increase of forward warning to most of the vehicles involved in a freeway emergency braking scenario, compared to a non-cooperative system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In condition-based maintenance (CBM), effective diagnostic and prognostic tools are essential for maintenance engineers to identify imminent fault and predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedule of production if necessary. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of bearings based on health state probability estimation and historical knowledge embedded in the closed loop diagnostics and prognostics system. The technique uses the Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation process to provide long term prediction. To validate the feasibility of the proposed model, real life fault historical data from bearings of High Pressure-Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life (RUL). The results obtained were very encouraging and showed that the proposed prognosis system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased popularity of mopeds and motor scooters in Australia and elsewhere in the last decade has contributed substantially to the greater use of powered two-wheelers (PTWs) as a whole. As the exposure of mopeds and scooters has increased, so too has the number of reported crashes involving those PTW types, but there is currently little research comparing the safety of mopeds and, particularly, larger scooters with motorcycles. This study compared the crash risk and crash severity of motorcycles, mopeds and larger scooters in Queensland, Australia. Comprehensive data cleansing was undertaken to separate motorcycles, mopeds and larger scooters in police-reported crash data covering the five years to 30 June 2008. The crash rates of motorcycles (including larger scooters) and mopeds in terms of registered vehicles were similar over this period, although the moped crash rate showed a stronger downward trend. However, the crash rates in terms of distance travelled were nearly four times higher for mopeds than for motorcycles (including larger scooters). More comprehensive distance travelled data is needed to confirm these findings. The overall severity of moped and scooter crashes was significantly lower than motorcycle crashes but an ordered probit regression model showed that crash severity outcomes related to differences in crash characteristics and circumstances, rather than differences between PTW types per se. Greater motorcycle crash severity was associated with higher (>80 km/h) speed zones, horizontal curves, weekend, single vehicle and nighttime crashes. Moped crashes were more severe at night and in speed zones of 90 km/h or more. Larger scooter crashes were more severe in 70 km/h zones (than 60 km/h zones) but not in higher speed zones, and less severe on weekends than on weekdays. The findings can be used to inform potential crash and injury countermeasures tailored to users of different PTW types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating correspond- ing velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis takes a new data mining approach for analyzing road/crash data by developing models for the whole road network and generating a crash risk profile. Roads with an elevated crash risk due to road surface friction deficit are identified. The regression tree model, predicting road segment crash rate, is applied in a novel deployment coined regression tree extrapolation that produces a skid resistance/crash rate curve. Using extrapolation allows the method to be applied across the network and cope with the high proportion of missing road surface friction values. This risk profiling method can be applied in other domains.