151 resultados para Accountability vertical
Resumo:
This thesis developed a practical, cost effective, easy-to-use method for measuring the vertical displacements of bridges using fiber Bragg grating (FBG) sensors, which includes the curvature and inclination approaches. These approaches were validated by the numerical simulation tests on a full scale bridge and the laboratory-based tests. In doing so, a novel frictionless FBG inclination sensor with extremely high sensitivity and resolution has also been developed and validated.
Resumo:
We report on the comparative study of magnetotransport properties of large-area vertical few-layer graphene networks with different morphologies, measured in a strong (up to 10 T) magnetic field over a wide temperature range. The petal-like and tree-like graphene networks grown by a plasma enhanced CVD process on a thin (500 nm) silicon oxide layer supported by a silicon wafer demonstrate a significant difference in the resistance-magnetic field dependencies at temperatures ranging from 2 to 200 K. This behaviour is explained in terms of the effect of electron scattering at ultra-long reactive edges and ultra-dense boundaries of the graphene nanowalls. Our results pave a way towards three-dimensional vertical graphene-based magnetoelectronic nanodevices with morphology-tuneable anisotropic magnetic properties. © The Royal Society of Chemistry 2013.
Resumo:
Plasmas, the 4th state of matter, uniformly transform natural precursors with different chemical composition in solid, liquid, and gas states into the same functional vertical graphenes in a single-step process within a few minutes. Functional vertical graphenes show reliable biosensing properties, strong binding with proteins, and improved adhesion to substrates.
Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey
Resumo:
A rapid reforming of natural honey exposed to reactive low-temperature Ar + H2 plasmas produced high-quality, ultra-thin vertical graphenes, without any metal catalyst or external heating. This transformation is only possible in the plasma and fails in similar thermal processes. The process is energy-efficient, environmentally benign, and is much cheaper than common synthesis methods based on purified hydrocarbon precursors. The graphenes retain the essential minerals of natural honey, feature reactive open edges and reliable gas- and bio-sensing performance.
Resumo:
Different magnetization in vertical graphenes fabricated by plasma-enabled chemical conversion of organic precursors with various oxygen atom contents and bonding energies was achieved. The graphenes grown from fat-like precursors exhibit magnetization up to 8 emu g−1, whereas the use of sugar-containing precursors results in much lower numbers. A relatively high Curie temperature exceeding 600 K was also demonstrated.
Resumo:
Vertical graphene nanosheets (VGNS) hold great promise for high-performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three-dimensional, open network structure. However, it remains challenging to materialise the VGNS-based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non-cost effective way of fabrication. Here we use a single-step, fast, scalable, and environmentally-benign plasma-enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder-free supercapacitor electrodes exhibit high specific capacitance up to 230 F g−1 at a scan rate of 10 mV s−1 and >99% capacitance retention after 1,500 charge-discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano-architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma-unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.
Resumo:
The effect of nitrogen on the growth of vertically oriented graphene nanosheets on catalyst-free silicon and glass substrates in a plasma-assisted process is studied. Different concentrations of nitrogen were found to act as versatile control knobs that could be used to tailor the length, number density and structural properties of the nanosheets. Nanosheets with different structural characteristics exhibit markedly different optical properties. The nanosheet samples were treated with a bovine serum albumin protein solution to investigate the effects of this variation on the optical properties for biosensing through confocal micro-Raman spectroscopy and UV-Vis spectrophotometry. © 2012 Optical Society of America.
Resumo:
A three-dimensional surface enhanced Raman scattering (SERS)/plasmonic sensing platform based on plasma-enabled, catalyst-free, few-layer vertical graphenes decorated with self-organized Au nanoparticle arrays is demonstrated. This platform is viable for multiple species detection and overcomes several limitations of two-dimensional sensors.
Resumo:
A simple, uniquely plasma-enabled and environment-friendly process to reduce the thickness of vertically standing graphenes to only 4–5 graphene layers and arranging them in dense, ultra-large surface area, ultra-open-edge-length, self-organized and interconnected networks is demonstrated. The approach for the ultimate thickness reduction to 1–2 graphene layers is also proposed. The vertical graphene networks are optically transparent and show tunable electric properties from semiconducting to semi-metallic and metallic at room and near-room temperature, thus recovering semi-metallic properties of a single-layer graphene.
Resumo:
Vertical graphene nanosheets have advantages over their horizontal counterparts, primarily due to the larger surface area available in the vertical systems. Vertical sheets can accommodate more functional particles, and due to the conduction and optical properties of thin graphene, these structures can find niche applications in the development of sensing and energy storage devices. This work is a combined experimental and theoretical study that reports on the synthesis and optical responses of vertical sheets decorated with gold nanoparticles. The findings help in interpreting optical responses of these hybrid graphene structures and are relevant to the development of future sensing platforms.
Resumo:
Vertical line extensions, both step-up and step-down, are common occurrence in consumer products. For example, Timex recently launched its luxury high-end Valentino line. On the other hand, many companies use downscale extensions to increase the overall sales volume. For instance, a number of luxury watch brands recently introduced watch collections with lower price points, like TAG Heur’s affordable watch the Aquaracer Calibre 5. Previous literature on vertical extensions has investigated how number of products in the line (Dacin and Smith 1994), the direction of the extension, brand concept (Kim, Lavack, and Smith 2001), and perceived risk (Lei, de Ruyter, and Wetzels 2008) affect extensions’ evaluation. Common to this literature is the use of models based on adaptation-level theory, which states that all relevant price information is integrated into a single prototype value and used in consumer judgments of price (Helson 1947; Mazumdar, Raj, and Sinha 2005). In the current research we argue that, while adaptation-level theory can be viewed as a useful simplification to understanding consumers’ evaluations, it misses out important contextual influences caused by a brand’s price range. Drawing on research on range-frequency theory (Mellers and Cooke 1994; Parducci 1965) we investigate the effects of price point distance and parent brand’s price range on evaluations of vertical extensions. Our reasoning leads to two important predictions that we test in a series of three experiments...
Resumo:
This paper investigates how social and environmental non-government organisations (NGOs) use the news media in an endeavour to create changes in the social performance and associated accountabilities of multinational buying companies’ (MBCs’) supply chains located in the developing country of Bangladesh. In this research, we explicitly seek the views of senior officers from global and local NGOs operating in Bangladesh, as well as the views of journalists from major global and local news media organisations. Our results show that social and environmental NGOs strategically use the news media in an effort to effect changes in corporate labour practices and related disclosure practices. More particularly, both the NGOs and the news media representatives stated that NGOs would be relatively powerless to create change in corporate without media coverage. This is the first known study to specifically address the joint and complementary role of NGOs and the news media in potentially creating changes in the social and environmental operating and disclosure practices of supply chains emanating from a developing country.
Resumo:
The potential benefits of shared eHealth records systems are promising for the future of improved healthcare. However, the uptake of such systems is hindered by concerns over the security and privacy of patient information. The use of Information Accountability and so called Accountable-eHealth (AeH) systems has been proposed to balance the privacy concerns of patients with the information needs of healthcare professionals. However, a number of challenges remain before AeH systems can become a reality. Among these is the need to protect the information stored in the usage policies and provenance logs used by AeH systems to define appropriate use of information and hold users accountable for their actions. In this paper, we discuss the privacy and security issues surrounding these accountability mechanisms, define valid access to the information they contain, discuss solutions to protect them, and verify and model an implementation of the access requirements as part of an Information Accountability Framework.
Resumo:
BACKGROUND In a process engineering setting, graduates are frequently allocated reviews of existing operations or required to scope new production processes by their supervisors with a view to improving or expanding on operations and overall productivity. These tasks may be carried out in teams and in consultation with the process engineer’s immediate line manager or a more experienced engineer, such as the Production or Maintenance Manager; ultimately reporting to senior management, which is frequently a non-engineer. Although professional skills development is part of engineering curricula, ‘professional conduct’ and ‘accountability’ required for dealing with peers and superiors in industry is not very well addressed at university. Consequently, upon graduation, many students are, in terms of knowledge and experience in this area, underprepared to work effectively in industry settings. PURPOSE The purpose of this study was to develop and implement a role-play scenario within a core 2nd year process engineering unit, so that students could gain knowledge, skills and experience in different aspects (and nuances) of professional conduct and accountability. DESIGN/METHOD In the role-play scenario, students worked in ‘engineering production teams’ to design a process for an iconic Queensland fruitcake and to present their solution and recommendations (culminating in a poster presentation) to an assessment panel consisting of staff, role-playing as, ‘production and plant managers’. Students were assessed on several areas, including professionalism using a criteria referenced assessment guide by a 3-member cross-disciplinary staff panel consisting of a Business Faculty lecturer, an engineer from industry and the lecturer of the Process Engineering unit. Professional conduct and accountability was gauged through direct questioning by the panel. Feedback was also sought from students on various aspects through a survey questionnaire after the role play activity at the end of semester. RESULTS Overall, the role play was very well performed with students achieving an average score of 79.3/100 (distinction grade). Professional conduct as assessed by panel was on average better than scores given for professional accountability (4.0 compared with 3.6 out of 5). Feedback from students indicated that the learning activities had contributed to their overall understanding of the content and the role of process engineers. Industry involvement was rated very highly as contributing to their learning at 4.8 (on Likert scale from 1 – 5) and the poster presentation was rated at 3.6. CONCLUSIONS This pilot study was successful in implementing a new assessment task for modelling professional conduct and accountability within a 2nd year core unit. This task incorporated a role-play activity and there was evidence to suggest that this and associated learning tasks were successful in broadening students’ understanding and skills in this area required for engineering practice. Following feedback given by students and staff, improvements will be made to the nature of the problem, how it is defined, its assessment, and the approach taken in the role-play scenario when the unit is offered in 2014.