803 resultados para 130208 Mathematics and Numeracy Curriculum and Pedagogy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contemporary higher education institutions are making significant efforts to develop cohesive, meaningful and effective learning experiences for Science, Technology, Engineering and Mathematics (STEM) curricula to prepare graduates for challenges in the modern knowledge economy, thus enhancing their employability (Carnevale et al, 2011). This can inspire innovative redesign of learning experiences embedded in technology-enhanced educational environments and the development of research-informed, pedagogically reliable strategies fostering interactions between various agents of the learning-teaching process. This paper reports on the results of a project aimed at enhancing students’ learning experiences by redesigning a large, first year mathematics unit for Engineering students at a large metropolitan public university. Within the project, the current study investigates the effectiveness of selected, technology-mediated pedagogical approaches used over three semesters. Grounded in user-centred instructional design, the pedagogical approaches explored the opportunities for learning created by designing an environment containing technological, social and educational affordances. A qualitative analysis of mixed-type questionnaires distributed to students indicated important inter-relations between participants’ frames of references of the learning-teaching process and stressed the importance (and difficulty) of creating appropriate functional context. Conclusions drawn from this study may inform instructional design for blended delivery of STEM-focused programs that endeavor to enhance students’ employability by educating work-ready graduates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Handbooks serve an important function for our research community in providing state-of-the-art summations, critiques, and extensions of existing trends in research. In the intervening years between the second and third editions of the Handbook of International Research in Mathematics Education, there have been stimulating developments in research, as well as new challenges in translating outcomes into practice. This third edition incorporates a number of new chapters representing areas of growth and challenge, in addition to substantially updated chapters from the second edition. As such, the Handbook addresses five core themes, namely, Priorities in International Mathematics Education Research, Democratic Access to Mathematics Learning, Transformations in Learning Contexts, Advances in Research Methodologies, and Influences of Advanced Technologies...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss three approaches to the use of technology as a teaching and learning tool that we are currently implementing for a target group of about one hundred second level engineering mathematics students. Central to these approaches is the underlying theme of motivating relatively poorly motivated students to learn, with the aim of improving learning outcomes. The approaches to be discussed have been used to replace, in part, more traditional mathematics tutorial sessions and lecture presentations. In brief, the first approach involves the application of constructivist thinking in the tertiary education arena, using technology as a computational and visual tool to create motivational knowledge conflicts or crises. The central idea is to model a realistic process of how scientific theory is actually developed, as proposed by Kuhn (1962), in contrast to more standard lecture and tutorial presentations. The second approach involves replacing procedural or algorithmic pencil-and-paper skills-consolidation exercises by software based tasks. Finally, the third approach aims at creating opportunities for higher order thinking via "on-line" exploratory or discovery mode tasks. The latter incorporates the incubation period method, as originally discussed by Rubinstein (1975) and others.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kindergartens in China offer structured full-day programs for children aged 3-6. Although formal schooling does not commence until age 7, the mathematics program in kindergartens is specifically focused on developing young children’s facility with simple addition and subtraction. This study explored young Chinese children’s strategies for solving basic addition facts as well as their intuitive understanding of addition via interview methods. Results indicate a strong impact that teacher-directed teaching methods have on young children’s cognitions in relation to addition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although various studies have shown that groups are more productive than individuals in complex mathematical problem solving, not all groups work together cooperatively. This review highlights that addressing organisational and cognitive factors to help scaffold group mathematical problem solving is necessary but not sufficient. Successful group problem solving also needs to incorporate metacognitive factors in order for groups to reflect on the organisational and cognitive factors influencing their group mathematical problem solving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss our current efforts to develop and implement an exploratory, discovery mode assessment item into the total learning and assessment profile for a target group of about 100 second level engineering mathematics students. The assessment item under development is composed of 2 parts, namely, a set of "pre-lab" homework problems (which focus on relevant prior mathematical knowledge, concepts and skills), and complementary computing laboratory exercises which are undertaken within a fixed (1 hour) time frame. In particular, the computing exercises exploit the algebraic manipulation and visualisation capabilities of the symbolic algebra package MAPLE, with the aim of promoting understanding of certain mathematical concepts and skills via visual and intuitive reasoning, rather than a formal or rigorous approach. The assessment task we are developing is aimed at providing students with a significant learning experience, in addition to providing feedback on their individual knowledge and skills. To this end, a noteworthy feature of the scheme is that marks awarded for the laboratory work are primarily based on the extent to which reflective, critical thinking is demonstrated, rather than the amount of CBE-style tasks completed by the student within the allowed time. With regard to student learning outcomes, a novel and potentially critical feature of our scheme is that the assessment task is designed to be intimately linked to the overall course content, in that it aims to introduce important concepts and skills (via individual student exploration) which will be revisited somewhat later in the pedagogically more restrictive formal lecture component of the course (typically a large group plenary format). Furthermore, the time delay involved, or "incubation period", is also a deliberate design feature: it is intended to allow students the opportunity to undergo potentially important internal re-adjustments in their understanding, before being exposed to lectures on related course content which are invariably delivered in a more condensed, formal and mathematically rigorous manner. In our presentation, we will discuss in more detail our motivation and rationale for trailing such a scheme for the targeted student group. Some of the advantages and disadvantages of our approach (as we perceived them at the initial stages) will also be enumerated. In a companion paper, the theoretical framework for our approach will be more fully elaborated, and measures of student learning outcomes (as obtained from eg. student provided feedback) will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents one approach to addressing the important issue of interdisciplinarity in the primary school mathematics curriculum, namely, through realistic mathematical modelling problems. Such problems draw upon other disciplines for their contexts and data. The article initially considers the nature of modelling with complex systems and discusses how such experiences differ from existing problem-solving activities in the primary mathematics curriculum. Principles for designing interdisciplinary modelling problems are then addressed, with reference to two mathematical modelling problems— one based in the scientific domain and the other in the literary domain. Examples of the models children have created in solving these problems follow. A reflection on the differences in the diversity and sophistication of these models raises issues regarding the design of interdisciplinary modelling problems. The article concludes with suggested opportunities for generating multidisciplinary projects within the regular mathematics curriculum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes some of the issues that teachers might encounter when scaffolding students’ thinking during mathematical investigations. It describes four episodes where a teacher’s scaffolding failed to support students’ mathematical thinking and explores the reasons why the scaffolding was ineffective. Understanding what is ineffective and why is one way to improve pedagogical practice. As a background to these episodes, we first provide an overview of the mathematical investigation. Our paper concludes with some recommendations for judicious scaffolding during investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explored kindergarten students’ intuitive strategies and understandings in probabilities. The paper aims to provide an in depth insight into the levels of probability understanding across four constructs, as proposed by Jones (1997), for kindergarten students. Qualitative evidence from two students revealed that even before instruction pupils have a good capacity of predicting most and least likely events, of distinguishing fair probability situations from unfair ones, of comparing the probability of an event in two sample spaces, and of recognizing conditional probability events. These results contribute to the growing evidence on kindergarten students’ intuitive probabilistic reasoning. The potential of this study for improving the learning of probability, as well as suggestions for further research, are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the development of student functional thinking during a teaching experiment that was conducted in two classrooms with a total of 45 children whose average age was nine years and six months. The teaching comprised four lessons taught by a researcher, with a second researcher and classroom teacher acting as participant observers. These lessons were designed to enable students to build mental representations in order to explore the use of function tables by focusing on the relationship between input and output numbers with the intention of extracting the algebraic nature of the arithmetic involved. All lessons were videotaped. The results indicate that elementary students are not only capable of developing functional thinking but also of communicating their thinking both verbally and symbolically.