98 resultados para two dimensional experimental


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction between new two-dimensional carbon allotropes, i.e. graphyne (GP) and graphdiyne (GD), and light metal complex hydrides LiAlH4, LiBH4, and NaAlH4 was studied using density functional theory (DFT) incorporating long range van der Waals dispersion correction. The light metal complex hydrides show much stronger interaction with GP and GP than that with fullerene due to the well defined pore structure. Such strong interactions greatly affect the degree of charge donation from the alkali metal atom to AlH4 or BH4, consequently destabilizing the Al-H or B-H bonds. Compared to the isolated light metal complex hydride, the presence of GP or GD can lead to a significant reduction of the hydrogen removal energy. Most interestingly, the hydrogen removal energies for LiBHx on GP and with GD are found to be lowered at all the stages (x from 4 to 1) whereas the H-removal energy in the third stage is increased for LiBH4 on fullerene. In addition, the presence of uniformly distributed pores on GP and GD is expected to facilitate the dehydrogenation of light metal complex hydrides. The present results highlight new interesting materials to catalyze light metal complex hydrides for potential application as media for hydrogen storage. Since GD has been successfully synthesized in a recent experiment, we hope the present work will stimulate further experimental investigations in this direction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The realistic strength and deflection behavior of industrial and commercial steel portal frame buildings are understood only if the effects of rigidity of end frames and profiled steel claddings are included. The conventional designs ignore these effects and are very much based on idealized two-dimensional (2D) frame behavior. Full-scale tests of a 1212 m steel portal frame building under a range of design load cases indicated that the observed deflections and bending moments in the portal frame were considerably different from those obtained from a 2D analysis of frames ignoring these effects. Three-dimensional (3D) analyses of the same building, including the effects of end frames and cladding, were carried out, and the results agreed well with full-scale test results. Results clearly indicated the need for such an analysis and for testing to study the true behavior of steel portal frame buildings. It is expected that such a 3D analysis will lead to lighter steel frames as the maximum moments and deflections are reduced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many cell types form clumps or aggregates when cultured in vitro through a variety of mechanisms including rapid cell proliferation, chemotaxis, or direct cell-to-cell contact. In this paper we develop an agent-based model to explore the formation of aggregates in cultures where cells are initially distributed uniformly, at random, on a two-dimensional substrate. Our model includes unbiased random cell motion, together with two mechanisms which can produce cell aggregates: (i) rapid cell proliferation, and (ii) a biased cell motility mechanism where cells can sense other cells within a finite range, and will tend to move towards areas with higher numbers of cells. We then introduce a pair-correlation function which allows us to quantify aspects of the spatial patterns produced by our agent-based model. In particular, these pair-correlation functions are able to detect differences between domains populated uniformly at random (i.e. at the exclusion complete spatial randomness (ECSR) state) and those where the proliferation and biased motion rules have been employed - even when such differences are not obvious to the naked eye. The pair-correlation function can also detect the emergence of a characteristic inter-aggregate distance which occurs when the biased motion mechanism is dominant, and is not observed when cell proliferation is the main mechanism of aggregate formation. This suggests that applying the pair-correlation function to experimental images of cell aggregates may provide information about the mechanism associated with observed aggregates. As a proof of concept, we perform such analysis for images of cancer cell aggregates, which are known to be associated with rapid proliferation. The results of our analysis are consistent with the predictions of the proliferation-based simulations, which supports the potential usefulness of pair correlation functions for providing insight into the mechanisms of aggregate formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports on the experimental testing of oxygen compatible ceramic matrix composite porous injectors in a nominally two-dimensional hydrogen fuelled and oxygen enriched radical farming scramjet in the T4 shock tunnel facility. All experiments were performed at a dynamic pressure of 146 kPa, an equivalent flight Mach number of 9.7, a stagnation pressure and enthalpy of 40MPa and 4.3 MJ/kg respectively and at a fuelling condition that resulted in an average equivalence ratio of 0.472. Oxygen was pre-mixed with the fuel prior to injection to achieve enrichment percentages of approximately 13%, 15% and 17%. These levels ensured that the hydrogen-oxidiser mix injected into the engine always remained too fuel rich to sustain a flame without any additional mixing with the captured air. Addition of pre-mixed oxygen with the fuel was found to significantly alter the performance of the engine; enhancing both combustion and ignition and converting a previously observed limited combustion condition into one with sustained and noticeable combustion induced pressure rise. Increases in the enrichment percentage lead to further increases in combustion levels and acted to reduce ignition lengths within the engine. Suppressed combustion runs, where a nitrogen test gas was used, confirmed that the pressure rise observed in these experiments as attributed to the oxygen enrichment and not associated with the increased mass injected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant based dried food products are popular commodities in global market where much research is focused to improve the products and processing techniques. In this regard, numerical modelling is highly applicable and in this work, a coupled meshfree particle-based two-dimensional (2-D) model was developed to simulate micro-scale deformations of plant cells during drying. Smoothed Particle Hydrodynamics (SPH) was used to model the viscous cell protoplasm (cell fluid) by approximating it to an incompressible Newtonian fluid. The visco-elastic characteristic of the cell wall was approximated to a Neo-Hookean solid material augmented with a viscous term and modelled with a Discrete Element Method (DEM). Compared to a previous work [H. C. P. Karunasena, W. Senadeera, Y. T. Gu and R. J. Brown, Appl. Math. Model., 2014], this study proposes three model improvements: linearly decreasing positive cell turgor pressure during drying, cell wall contraction forces and cell wall drying. The improvements made the model more comparable with experimental findings on dried cell morphology and geometric properties such as cell area, diameter, perimeter, roundness, elongation and compactness. This single cell model could be used as a building block for advanced tissue models which are highly applicable for product and process optimizations in Food Engineering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A combined experimental and numerical program was conducted to study the in-plane shear behaviour of hollow concrete masonry panels containing reinforced grout cores. This paper is focused on the numerical program. A two dimensional macromodelling strategy was used to simulate the behaviour of the confined masonry (CM) shear panels. Both the unreinforced masonry and the confining element were modelled using macromasonry properties and the steel reinforcement was modelled as an embedded truss element located within the grout using perfectly bonded constraint. The FE model reproduced key behaviours observed in the experiments, including the shear strength, the deformation and the crack patterns of the unconfined and confined masonry panels. The predictions of the validated model were used to evaluate the existing in-plane shear expressions available in the national masonry standards and research publications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A three-dimensional surface enhanced Raman scattering (SERS)/plasmonic sensing platform based on plasma-enabled, catalyst-free, few-layer vertical graphenes decorated with self-organized Au nanoparticle arrays is demonstrated. This platform is viable for multiple species detection and overcomes several limitations of two-dimensional sensors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The equilibrium profiles of the plasma parameters of large-area if discharges in a finite-length metal-shielded dielectric cylinder are computed using a two-dimensional fluid code. The rf power is coupled to the plasma through edge-localized surface waves traveling in the azimuthal direction along the plasma edge. It is shown that self-consistent accounting for axial plasma diffusion and radial nonuniformity of the electron temperature can explain the frequently reported deviations of experimentally measured radial density profiles from that of the conventional linear diffusion models. The simulation results are in a good agreement with existing experimental data obtained from surface-wave sustained large-diameter plasmas. © 2002 The American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The results of a hybrid numerical simulation of the growth kinetics of carbon nanowall-like nanostructures in the plasma and neutral gas synthesis processes are presented. The low-temperature plasma-based process was found to have a significant advantage over the purely neutral flux deposition in providing the uniform size distribution of the nanostructures. It is shown that the nanowall width uniformity is the best (square deviations not exceeding 1.05) in high-density plasmas of 3.0× 1018 m-3, worsens in lower-density plasmas (up to 1.5 in 1.0× 1017 m-3 plasmas), and is the worst (up to 1.9) in the neutral gas-based process. This effect has been attributed to the focusing of ion fluxes by irregular electric field in the vicinity of plasma-grown nanostructures on substrate biased with -20 V potential, and differences in the two-dimensional adatom diffusion fluxes in the plasma and neutral gas-based processes. The results of our numerical simulations are consistent with the available experimental reports on the effect of the plasma process parameters on the sizes and shapes of relevant nanostructures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uniformity of postprocessing of large-area, dense nanostructure arrays is currently one of the greatest challenges in nanoscience and nanofabrication. One of the major issues is to achieve a high level of control in specie fluxes to specific surface areas of the nanostructures. As suggested by the numerical experiments in this work, this goal can be achieved by manipulating microscopic ion fluxes by varying the plasma sheath and nanorod array parameters. The dynamics of ion-assisted deposition of functional monolayer coatings onto two-dimensional carbon nanorod arrays in a hydrogen plasma is simulated by using a multiscale hybrid numerical simulation. The numerical results show evidence of a strong correlation between the aspect ratios and nanopattern positioning of the nanorods, plasma sheath width, and densities and distributions of microscopic ion fluxes. When the spacing between the nanorods and/or their aspect ratios are larger, and/or the plasma sheath is wider, the density of microscopic ion current flowing to each of the individual nanorods increases, thus reducing the time required to apply a functional monolayer coating down to 11 s for a 7-μm-wide sheath, and to 5 s for a 50-μm-wide sheath. The computed monolayer coating development time is consistent with previous experimental reports on plasma-assisted functionalization of related carbon nanostructures [B. N. Khare et al., Appl. Phys. Lett. 81, 5237 (2002)]. The results are generic in that they can be applied to a broader range of plasma-based processes and nanostructures, and contribute to the development of deterministic strategies of postprocessing and functionalization of various nanoarrays for nanoelectronic, biomedical, and other emerging applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents the details of the numerical model used in simulation of self-organization of nano-islands on solid surfaces in plasma-assisted assembly of quantum dot structures. The model includes the near-substrate non-neutral layer (plasma sheath) and a nanostructured solid deposition surface and accounts for the incoming flux of and energy of ions from the plasma, surface temperature-controlled adatom migration about the surface, adatom collisions with other adatoms and nano-islands, adatom inflow to the growing nano-islands from the plasma and from the two-dimensional vapour on the surface, and particle evaporation to the ambient space and the two-dimensional vapour. The differences in surface concentrations of adatoms in different areas within the quantum dot pattern significantly affect the self-organization of the nano-islands. The model allows one to formulate the conditions when certain islands grow, and certain ones shrink or even dissolve and relate them to the process control parameters. Surface coverage by selforganized quantum dots obtained from numerical simulation appears to be in reasonable agreement with the available experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silicon carbide is one of the promising materials for the fabrication of various one- and two-dimensional nanostructures. In this chapter, we discuss experimental and theoretical studies of the plasma-enabled fabrication of silicon carbide quantum dots, nanowires, and nanorods. The discussed fabrication methods include plasma-assisted growth with and without anodic aluminium oxide membranes and with or without silane as a source of silicon. In the silane-free experiments, quartz was used as a source of silicon to synthesize the silicon carbide nanostructures in an environmentally friendly process. The mechanism of the formation of nanowires and nanorods is also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant food materials have a very high demand in the consumer market and therefore, improved food products and efficient processing techniques are concurrently being researched in food engineering. In this context, numerical modelling and simulation techniques have a very high potential to reveal fundamentals of the underlying mechanisms involved. However, numerical modelling of plant food materials during drying becomes quite challenging, mainly due to the complexity of the multiphase microstructure of the material, which undergoes excessive deformations during drying. In this regard, conventional grid-based modelling techniques have limited applicability due to their inflexible grid-based fundamental limitations. As a result, meshfree methods have recently been developed which offer a more adaptable approach to problem domains of this nature, due to their fundamental grid-free advantages. In this work, a recently developed meshfree based two-dimensional plant tissue model is used for a comparative study of microscale morphological changes of several food materials during drying. The model involves Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) to represent fluid and solid phases of the cellular structure. Simulation are conducted on apple, potato, carrot and grape tissues and the results are qualitatively and quantitatively compared and related with experimental findings obtained from the literature. The study revealed that cellular deformations are highly sensitive to cell dimensions, cell wall physical and mechanical properties, middle lamella properties and turgor pressure. In particular, the meshfree model is well capable of simulating critically dried tissues at lower moisture content and turgor pressure, which lead to cell wall wrinkling. The findings further highlighted the potential applicability of the meshfree approach to model large deformations of the plant tissue microstructure during drying, providing a distinct advantage over the state of the art grid-based approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two-dimensional (2D) substrates cannot accurately mimic the complex matrix of native TME, whereas 3D models can recapitulate the natural tumour progression in vitro. As part of the tumour stroma, fibroblasts and endothelial cells (ECs) are well-known to not only support tumour growth but also to reduce the efficacy of anti-cancer drugs. Particularly, ECs are involved in the process of tumour vascularisation which represents a crucial step in the progression of cancer. Most of the previous studies are carried out in animal models or 2D cultures; hence, a detailed evaluation of experimental data is poor. To address this issue, we aim to develop a novel 3D in vitro approach, to mimic native tumour angiogenesis in 3D and to quantify the developed vascular network.