288 resultados para traffic signals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic control at road junctions is one of the major concerns in most metropolitan cities. Controllers of various approaches are available and the required control action is the effective green-time assigned to each traffic stream within a traffic-light cycle. The application of fuzzy logic provides the controller with the capability to handle uncertain natures of the system, such as drivers’ behaviour and random arrivals of vehicles. When turning traffic is allowed at the junction, the number of phases in the traffic-light cycle increases. The additional input variables inevitably complicate the controller and hence slow down the decision-making process, which is critical in this real-time control problem. In this paper, a hierarchical fuzzy logic controller is proposed to tackle this traffic control problem at a 2-way road junction with turning traffic. The two levels of fuzzy logic controllers devise the minimum effective green-time and fine-tune it respectively at each phase of a traffic-light cycle. The complexity of the controller at each level is reduced with smaller rule-set. The performance of this hierarchical controller is examined by comparison with a fixed-time controller under various traffic conditions. Substantial delay reduction has been achieved as a result and the performance and limitation of the controller will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Popular wireless network standards, such as IEEE 802.11/15/16, are increasingly adopted in real-time control systems. However, they are not designed for real-time applications. Therefore, the performance of such wireless networks needs to be carefully evaluated before the systems are implemented and deployed. While efforts have been made to model general wireless networks with completely random traffic generation, there is a lack of theoretical investigations into the modelling of wireless networks with periodic real-time traffic. Considering the widely used IEEE 802.11 standard, with the focus on its distributed coordination function (DCF), for soft-real-time control applications, this paper develops an analytical Markov model to quantitatively evaluate the network quality-of-service (QoS) performance in periodic real-time traffic environments. Performance indices to be evaluated include throughput capacity, transmission delay and packet loss ratio, which are crucial for real-time QoS guarantee in real-time control applications. They are derived under the critical real-time traffic condition, which is formally defined in this paper to characterize the marginal satisfaction of real-time performance constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high performance, low computational complexity rate-based flow control algorithm which can avoid congestion and achieve fairness is important to ATM available bit rate service. The explicit rate allocation algorithm proposed by Kalampoukas et al. is designed to achieve max–min fairness in ATM networks. It has several attractive features, such as a fixed computational complexity of O(1) and the guaranteed convergence to max–min fairness. In this paper, certain drawbacks of the algorithm, such as the severe overload of an outgoing link during transient period and the non-conforming use of the current cell rate field in a resource management cell, have been identified and analysed; a new algorithm which overcomes these drawbacks is proposed. The proposed algorithm simplifies the rate computation as well. Compared with Kalampoukas's algorithm, it has better performance in terms of congestion avoidance and smoothness of rate allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—The role of cardiopulmonary signals in the dynamics of wavefront aberrations in the eye has been examined. Synchronous measurement of the eye’s wavefront aberrations, cardiac function, blood pulse, and respiration signals were taken for a group of young, healthy subjects. Two focusing stimuli, three breathing patterns, as well as natural and cycloplegic eye conditions were examined. A set of tools, including time–frequency coherence and its metrics, has been proposed to acquire a detailed picture of the interactions of the cardiopulmonary system with the eye’s wavefront aberrations. The results showed that the coherence of the blood pulse and its harmonics with the eye’s aberrations was, on average, weak (0.4 ± 0.15), while the coherence of the respiration signal with eye’s aberrations was, on average, moderate (0.53 ± 0.14). It was also revealed that there were significant intervals during which high coherence occurred. On average, the coherence was high (>0.75) during 16% of the recorded time, for the blood pulse, and 34% of the time for the respiration signal. A statistically significant decrease in average coherence was noted for the eye’s aberrations with respiration in the case of fast controlled breathing (0.5 Hz). The coherence between the blood pulse and the defocus was significantly larger for the far target than for the near target condition. After cycloplegia, the coherence of defocus with the blood pulse significantly decreased, while this was not the case for the other aberrations. There was also a noticeable, but not statistically significant, increase in the coherence of the comatic term and respiration in that case. By using nonstationary measures of signal coherence, a more detailed picture of interactions between the cardiopulmonary signals and eye’s wavefront aberrations has emerged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Genetic Algorithms (GA) approach to resolve traffic conflicts at a railway junction. The formulation of the problem for the suitable application of GA will be discussed and three neighborhoods have been proposed for generation evolution. The performance of the GA is evaluated by computer simulation. This study paves the way for more applications of artificial intelligence techniques on a rather conservative industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces an event-based traffic model for railway systems adopting fixed-block signalling schemes. In this model, the events of trains' arrival at and departure from signalling blocks constitute the states of the traffic flow. A state transition is equivalent to the progress of the trains by one signalling block and it is realised by referring to past and present states, as well as a number of pre-calculated look-up tables of run-times in the signalling block under various signalling conditions. Simulation results are compared with those from a time-based multi-train simulator to study the improvement of processing time and accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid growth of mobile telephone use, satellite services, and now the wireless Internet and WLANs are generating tremendous changes in telecommunication and networking. As indoor wireless communications become more prevalent, modeling indoor radio wave propagation in populated environments is a topic of significant interest. Wireless MIMO communication exploits phenomena such as multipath propagation to increase data throughput and range, or reduce bit error rates, rather than attempting to eliminate effects of multipath propagation as traditional SISO communication systems seek to do. The MIMO approach can yield significant gains for both link and network capacities, with no additional transmitting power or bandwidth consumption when compared to conventional single-array diversity methods. When MIMO and OFDM systems are combined and deployed in a suitable rich scattering environment such as indoors, a significant capacity gain can be observed due to the assurance of multipath propagation. Channel variations can occur as a result of movement of personnel, industrial machinery, vehicles and other equipment moving within the indoor environment. The time-varying effects on the propagation channel in populated indoor environments depend on the different pedestrian traffic conditions and the particular type of environment considered. A systematic measurement campaign to study pedestrian movement effects in indoor MIMO-OFDM channels has not yet been fully undertaken. Measuring channel variations caused by the relative positioning of pedestrians is essential in the study of indoor MIMO-OFDM broadband wireless networks. Theoretically, due to high multipath scattering, an increase in MIMO-OFDM channel capacity is expected when pedestrians are present. However, measurements indicate that some reductions in channel capacity could be observed as the number of pedestrians approaches 10 due to a reduction in multipath conditions as more human bodies absorb the wireless signals. This dissertation presents a systematic characterization of the effects of pedestrians in indoor MIMO-OFDM channels. Measurement results, using the MIMO-OFDM channel sounder developed at the CSIRO ICT Centre, have been validated by a customized Geometric Optics-based ray tracing simulation. Based on measured and simulated MIMO-OFDM channel capacity and MIMO-OFDM capacity dynamic range, an improved deterministic model for MIMO-OFDM channels in indoor populated environments is presented. The model can be used for the design and analysis of future WLAN to be deployed in indoor environments. The results obtained show that, in both Fixed SNR and Fixed Tx for deterministic condition, the channel capacity dynamic range rose with the number of pedestrians as well as with the number of antenna combinations. In random scenarios with 10 pedestrians, an increment in channel capacity of up to 0.89 bits/sec/Hz in Fixed SNR and up to 1.52 bits/sec/Hz in Fixed Tx has been recorded compared to the one pedestrian scenario. In addition, from the results a maximum increase in average channel capacity of 49% has been measured while 4 antenna elements are used, compared with 2 antenna elements. The highest measured average capacity, 11.75 bits/sec/Hz, corresponds to the 4x4 array with 10 pedestrians moving randomly. Moreover, Additionally, the spread between the highest and lowest value of the the dynamic range is larger for Fixed Tx, predicted 5.5 bits/sec/Hz and measured 1.5 bits/sec/Hz, in comparison with Fixed SNR criteria, predicted 1.5 bits/sec/Hz and measured 0.7 bits/sec/Hz. This has been confirmed by both measurements and simulations ranging from 1 to 5, 7 and 10 pedestrians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-term traffic flow data is characterized by rapid and dramatic fluctuations. It reflects the nature of the frequent congestion in the lane, which shows a strong nonlinear feature. Traffic state estimation based on the data gained by electronic sensors is critical for much intelligent traffic management and the traffic control. In this paper, a solution to freeway traffic estimation in Beijing is proposed using a particle filter, based on macroscopic traffic flow model, which estimates both traffic density and speed.Particle filter is a nonlinear prediction method, which has obvious advantages for traffic flows prediction. However, with the increase of sampling period, the volatility of the traffic state curve will be much dramatic. Therefore, the prediction accuracy will be affected and difficulty of forecasting is raised. In this paper, particle filter model is applied to estimate the short-term traffic flow. Numerical study is conducted based on the Beijing freeway data with the sampling period of 2 min. The relatively high accuracy of the results indicates the superiority of the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents techniques which can be viewed as pre-processing step towards diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time-frequency analysis, selection of optimum frequency band. Some results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals are also outlined. The results on separation of RMS signals show this technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE and GAIA. Initial analyses established high, low and moderate traffic scenarios as well as low, low to moderate, moderate, high and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75µm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 µm, whereas metal concentrations in finer size range of <1-75 µm were not affected. As practical implications, solids <1 µm and organic matter from 1 - >300 µm can be targeted for removal of Ni, Cu, Pb, Cd, Cr and Zn from build-up whilst organic matter from <1 - >300 µm can be targeted for removal of Cd, Cr, Pb and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined specular reflection and diffusion model using the radiosity technique was developed to calculate road traffic noise level on residential balconies. The model is capable of numerous geometrical configurations for a single balcony situated in the centre of a street canyon. The geometry of the balcony and the street can be altered with width,length and height. The model was used to calculate for three different geometrical and acoustic absorption characteristics for a balcony. The calculated results are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.