162 resultados para temporal compensation
Resumo:
Persistent, lipophilic organochlorine pesticides (OCPs) such as dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexanes (HCHs), dieldrin, chlordanes, hexachlorobenzene (HCB) and mirex are known to accumulate in human samples [1, 2]. Persistent OCPs are among the chemicals that are covered under the Stockholm Convention on persistent organic pollutants [3]. Exceptions to this include relatively less lipophillic compounds like HCH (KOW<10^5). In Australia, OCPs such as DDT and HCHs were introduced in the 1940s. This followed a period of widespread use until the 1970s when recognition of risks related to OCPs resulted in reduced use and their ultimate ban in the 1980s. Mirex, however, remained in very restricted use in Northern Australia for treatment of one species of termites (the Giant Termite (Mastotermes darwinensis)) but this use was phased out in 2007.
Resumo:
The Queensland Supreme Court case of Cape Flattery Silica Mines Pty Ltd v Hope Vale Aboriginal Shire Council [2012] QSC 381 provides guidance on the long-term ramifications of compensation agreements for mining activities. The central issue considered by the Court was whether compensation payments relate to land and run with the land pursuant to s 53(1) of the Property Law Act.
Resumo:
Purpose: Photoreceptor interactions reduce the temporal bandwidth of the visual system under mesopic illumination. The dynamics of these interactions are not clear. This study investigated cone-cone and rod-cone interactions when the rod (R) and three cone (L, M, S) photoreceptor classes contribute to vision via shared post-receptoral pathways. Methods: A four-primary photostimulator independently controlled photoreceptor activity in human observers. To determine the temporal dynamics of receptoral (L, S, R) and post-receptoral (LMS, LMSR, +L-M) pathways (5 Td, 7° eccentricity) in Experiment 1, ON-pathway sensitivity was assayed with an incremental probe (25ms) presented relative to onset of an incremental sawtooth conditioning pulse (1000ms). To define the post-receptoral pathways mediating the rod stimulus, Experiment 2 matched the color appearance of increased rod activation (30% contrast, 25-1000ms; constant cone excitation) with cone stimuli (variable L+M, L/L+M, S/L+M; constant rod excitation). Results: Cone-cone interactions with luminance stimuli (LMS, LMSR, L-cone) reduced Weber contrast sensitivity by 13% and the time course of adaptation was 23.7±1ms (μ±SE). With chromatic stimuli (+L-M, S), cone pathway sensitivity was also reduced and recovery was slower (+L-M 8%, 2.9±0.1ms; S 38%, 1.5±0.3ms). Threshold patterns at ON-conditioning pulse onset were monophasic for luminance and biphasic for chromatic stimuli. Rod-rod interactions increased sensitivity(19%) with a recovery time of 0.7±0.2ms. Compared to cone-cone interactions, rod-cone interactions with luminance stimuli reduced sensitivity to a lesser degree (5%) with faster recovery (42.9±0.7ms). Rod-cone interactions were absent with chromatic stimuli. Experiment 2 showed that rod activation generated luminance (L+M) signals at all durations, and chromatic signals (L/L+M, S/L+M) for durations >75ms. Conclusions: Temporal dynamics of cone-cone interactions are consistent with contrast sensitivity loss in the MC pathway for luminance stimuli and chromatically opponent responses in the PC and KC pathway with chromatic stimuli. Rod-cone interactions limit contrast sensitivity loss during dynamic illumination changes and increase the speed of mesopic light adaptation. The change in relative weighting of the temporal rod signal within the major post-receptoral pathways modifies the sensitivity and dynamics of photoreceptor interactions.
Resumo:
Purpose: IpRGCs mediate non-image forming functions including photoentrainment and the pupil light reflex (PLR). Temporal summation increases visual sensitivity and decreases temporal resolution for image forming vision, but the summation properties of nonimage forming vision are unknown. We investigated the temporal summation of inner (ipRGC) and outer (rod/cone) retinal inputs to the PLR. Method: The consensual PLR of the left eye was measured in six participants with normal vision using a Maxwellian view infrared pupillometer. Temporal summation was investigated using a double-pulse protocol (100 ms stimulus pairs; 0–1024 ms inter-stimulus interval, ISI) presented to the dilated fellow right eye (Tropicamide 1%). Stimulus lights (blue λmax = 460 nm; red λmax = 638 nm) biased activity to inneror outer retinal inputs to non-image forming vision. Temporal summation was measured suprathreshold (15.2 log photons.cm−2.s−1 at the cornea) and subthreshold (11.4 log photons.cm−2.s−1 at the cornea). Results: RM-ANOVAs showed the suprathreshold and subthreshold 6 second post illumination pupil response (PIPR: expressed as percentage baseline diameter) did not significantly vary for red or blue stimuli (p > .05). The PIPR for a subthreshold red 16 ms double-pulse control condition did not significantly differ with ISI (p > .05). The maximum constriction amplitude for red and blue 100 ms double- pulse stimuli did not significantly vary with ISI (p > .05). Conclusion: The non-significant changes in suprathreshold PIPR and subthreshold maximum pupil constriction indicate that inner retinal ipRGC inputs and outer retinal photoreceptor inputs to the PLR do not show temporal summation. The results suggest a fundamental difference between the temporal summation characteristics of image forming and non-image forming vision.
Resumo:
Fruit flies require protein for reproductive development and actively feed upon protein sources in the field. Liquid protein baits mixed with insecticide are used routinely to manage pest fruit flies, such as Bactrocera tryoni (Froggatt). However, there are still some gaps in the underpinning science required to improve the efficacy of bait spray technology. The spatial and temporal foraging behaviour of B. tryoni in response to protein was investigated in the field. A series of linked trials using either wild flies in the open field or laboratory-reared flies in field cages and a netted orchard were undertaken using nectarines and guavas. Key questions investigated were the fly's response to protein relative to: height of protein within the canopy, fruiting status of the tree, time of day, season and size of the experimental arena. Canopy height had a significant response on B. tryoni foraging, with more flies foraging on protein in the mid to upper canopy. Fruiting status also had a significant effect on foraging, with most flies responding to protein when applied to fruiting hosts. B. tryoni demonstrated a repeatable diurnal response pattern to protein, with the peak response being between 12:00–16:00 h. Season showed significant but unpredictable effects on fruit fly response to protein in the subtropical environment where the work was undertaken. Relative humidity, but not temperature or rainfall, was positively correlated with protein response. The number of B. tryoni responding to protein decreased dramatically as the spatial scale increased from field cage through to the open field. Based on these results, it is recommend that, to be most effective, protein bait sprays should be applied to the mid to upper canopies of fruiting hosts. Overall, the results show that the protein used, an industry standard, has very low attractancy to B. tryoni and that further work is urgently needed to develop more volatile protein baits.
Resumo:
In Jacobs v Woolworths Limited [2010] QSC 24 Jones J was required to determine whether a worker who had lodged an application for compensation for an injury outside the time prescribed under the Workers Compensation and Rehabilitation Act 2003 (Qld) (“the Act”) was precluded from seeking common law damages for that injury. This determination depended upon the proper construction of s 131 of the Act, and what was to be understood by the words “worker who has not lodged an application for compensation for the injury” for the purpose of s 237(1)(d).
Resumo:
This paper investigates advanced channel compensation techniques for the purpose of improving i-vector speaker verification performance in the presence of high intersession variability using the NIST 2008 and 2010 SRE corpora. The performance of four channel compensation techniques: (a) weighted maximum margin criterion (WMMC), (b) source-normalized WMMC (SN-WMMC), (c) weighted linear discriminant analysis (WLDA), and; (d) source-normalized WLDA (SN-WLDA) have been investigated. We show that, by extracting the discriminatory information between pairs of speakers as well as capturing the source variation information in the development i-vector space, the SN-WLDA based cosine similarity scoring (CSS) i-vector system is shown to provide over 20% improvement in EER for NIST 2008 interview and microphone verification and over 10% improvement in EER for NIST 2008 telephone verification, when compared to SN-LDA based CSS i-vector system. Further, score-level fusion techniques are analyzed to combine the best channel compensation approaches, to provide over 8% improvement in DCF over the best single approach, (SN-WLDA), for NIST 2008 interview/ telephone enrolment-verification condition. Finally, we demonstrate that the improvements found in the context of CSS also generalize to state-of-the-art GPLDA with up to 14% relative improvement in EER for NIST SRE 2010 interview and microphone verification and over 7% relative improvement in EER for NIST SRE 2010 telephone verification.
Resumo:
This paper examines the role of compensation and risk committees in managing and monitoring the risk behaviour of Australian financial firms in the period leading up to the global financial crisis (2006–2008). This empirical study of 711 observations of financial sector firms demonstrates how the coordination of risk management and compensation committees reduces information asymmetry. The study shows that the composition of the risk and compensation committees is positively associated with risk, which, in turn, is associated with firm performance. More importantly, information asymmetry is reduced when a director is a member of both the risk and compensation committees which moderate the negative association between risk and firm performance for firms with high risk.
Resumo:
Soil-based emissions of nitrous oxide (N2O), a well-known greenhouse gas, have been associated with changes in soil water-filled pore space (WFPS) and soil temperature in many previous studies. However, it is acknowledged that the environment-N2O relationship is complex and still relatively poorly unknown. In this article, we employed a Bayesian model selection approach (Reversible jump Markov chain Monte Carlo) to develop a data-informed model of the relationship between daily N2O emissions and daily WFPS and soil temperature measurements between March 2007 and February 2009 from a soil under pasture in Queensland, Australia, taking seasonal factors and time-lagged effects into account. The model indicates a very strong relationship between a hybrid seasonal structure and daily N2O emission, with the latter substantially increased in summer. Given the other variables in the model, daily soil WFPS, lagged by a week, had a negative influence on daily N2O; there was evidence of a nonlinear positive relationship between daily soil WFPS and daily N2O emission; and daily soil temperature tended to have a linear positive relationship with daily N2O emission when daily soil temperature was above a threshold of approximately 19°C. We suggest that this flexible Bayesian modeling approach could facilitate greater understanding of the shape of the covariate-N2O flux relation and detection of effect thresholds in the natural temporal variation of environmental variables on N2O emission.
Resumo:
Smart Card data from Automated Fare Collection system has been considered as a promising source of information for transit planning. However, literature has been limited to mining travel patterns from transit users and suggesting the potential of using this information. This paper proposes a method for mining spatial regular origins-destinations and temporal habitual travelling time from transit users. These travel regularity are discussed as being useful for transit planning. After reconstructing the travel itineraries, three levels of Density-Based Spatial Clustering of Application with Noise (DBSCAN) have been utilised to retrieve travel regularity of each of each frequent transit users. Analyses of passenger classifications and personal travel time variability estimation are performed as the examples of using travel regularity in transit planning. The methodology introduced in this paper is of interest for transit authorities in planning and managements
Resumo:
This thesis developed semi-parametric regression models for estimating the spatio-temporal distribution of outdoor airborne ultrafine particle number concentration (PNC). The models developed incorporate multivariate penalised splines and random walks and autoregressive errors in order to estimate non-linear functions of space, time and other covariates. The models were applied to data from the "Ultrafine Particles from Traffic Emissions and Child" project in Brisbane, Australia, and to longitudinal measurements of air quality in Helsinki, Finland. The spline and random walk aspects of the models reveal how the daily trend in PNC changes over the year in Helsinki and the similarities and differences in the daily and weekly trends across multiple primary schools in Brisbane. Midday peaks in PNC in Brisbane locations are attributed to new particle formation events at the Port of Brisbane and Brisbane Airport.
Resumo:
Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.
Resumo:
Construction has been plagued with serious injuries and deaths for years. Although the technological advances have made the world safer and healthier, researchers have noted that some safety interventions, which had clear objective safety benefits, had failed to achieve the forecast savings in lives and injuries. The purpose of this study was to explore whether the construction workers show risk compensation and engage in greater risk taking when certain types of safety measures are implemented in the construction site. A case study approach was used to achieve the aim of this study. A typical construction site in Sydney was selected as the subject of the case study. Data were collected through direct observations, questionnaires and interviews. The findings confirm that workers show risk compensation behaviours in the construction environment. The risk compensation behaviours of workers varied with the level of experience and whether they have suffered from a past workplace injury. The findings of this study may offer a better understanding of workers’ behavioural patterns in construction environment and the effectiveness of safety interventions. The result of this study may provide supports for designing, implementing and evaluating safety interventions in construction site.
Resumo:
Background Commercially available instrumented treadmill systems that provide continuous measures of temporospatial gait parameters have recently become available for clinical gait analysis. This study evaluated the level of agreement between temporospatial gait parameters derived from a new instrumented treadmill, which incorporated a capacitance-based pressure array, with those measured by a conventional instrumented walkway (criterion standard). Methods Temporospatial gait parameters were estimated from 39 healthy adults while walking over an instrumented walkway (GAITRite®) and instrumented treadmill system (Zebris) at matched speed. Differences in temporospatial parameters derived from the two systems were evaluated using repeated measures ANOVA models. Pearson-product-moment correlations were used to investigate relationships between variables measured by each system. Agreement was assessed by calculating the bias and 95% limits of agreement. Results All temporospatial parameters measured via the instrumented walkway were significantly different from those obtained from the instrumented treadmill (P < .01). Temporospatial parameters derived from the two systems were highly correlated (r, 0.79–0.95). The 95% limits of agreement for temporal parameters were typically less than ±2% of gait cycle duration. However, 95% limits of agreement for spatial measures were as much as ±5 cm. Conclusions Differences in temporospatial parameters between systems were small but statistically significant and of similar magnitude to changes reported between shod and unshod gait in healthy young adults. Temporospatial parameters derived from an instrumented treadmill, therefore, are not representative of those obtained from an instrumented walkway and should not be interpreted with reference to literature on overground walking.
Resumo:
This study investigates the role of environmental dynamics (i.e., market turbulence) as a factor influencing an organisation’s top management temporal orientation, and the impact of temporal orientation on innovative and financial performance. Results show that firm’s operating in highly turbulent markets exhibit higher degrees of future orientation, as opposed to present orientation. Future-oriented (rather than present-oriented) firms also experience higher levels of both incremental and radical innovations, which in turn generate financial performance. The study highlights the important role of shared strategic mindset (which is contextually influenced) as a driving factor behind the firm innovative and financial performance.