178 resultados para low-inertia hybrid power system
Resumo:
This paper presents an analysis of phasor measurement method for tracking the fundamental power frequency to show if it has the performance necessary to cope with the requirements of power system protection and control. In this regard, several computer simulations presenting the conditions of a typical power system signal especially those highly distorted by harmonics, noise and offset, are provided to evaluate the response of the Phasor Measurement (PM) technique. A new method, which can shorten the delay of estimation, has also been proposed for the PM method to work for signals free of even-order harmonics.
Resumo:
This paper proposes a method for power flow control between utility and microgrid through back-to-back converters, which facilitates desired real and reactive power flow between utility and microgrid. In the proposed control strategy, the system can run in two different modes depending on the power requirement in the microgrid. In mode-1, specified amount of real and reactive power are shared between the utility and the microgrid through the back-to-back converters. Mode-2 is invoked when the power that can be supplied by the DGs in the microgrid reaches its maximum limit. In such a case, the rest of the power demand of the microgrid has to be supplied by the utility. An arrangement between DGs in the microgrid is proposed to achieve load sharing in both grid connected and islanded modes. The back-to-back converters also provide total frequency isolation between the utility and the microgrid. It is shown that the voltage or frequency fluctuation in the utility side has no impact on voltage or power in microgrid side. Proper relay-breaker operation coordination is proposed during fault along with the blocking of the back-to-back converters for seamless resynchronization. Both impedance and motor type loads are considered to verify the system stability. The impact of dc side voltage fluctuation of the DGs and DG tripping on power sharing is also investigated. The efficacy of the proposed control ar-rangement has been validated through simulation for various operating conditions. The model of the microgrid power system is simulated in PSCAD.
Resumo:
In this thesis, a new technique has been developed for determining the composition of a collection of loads including induction motors. The application would be to provide a representation of the dynamic electrical load of Brisbane so that the ability of the power system to survive a given fault can be predicted. Most of the work on load modelling to date has been on post disturbance analysis, not on continuous on-line models for loads. The post disturbance methods are unsuitable for load modelling where the aim is to determine the control action or a safety margin for a specific disturbance. This thesis is based on on-line load models. Dr. Tania Parveen considers 10 induction motors with different power ratings, inertia and torque damping constants to validate the approach, and their composite models are developed with different percentage contributions for each motor. This thesis also shows how measurements of a composite load respond to normal power system variations and this information can be used to continuously decompose the load continuously and to characterize regarding the load into different sizes and amounts of motor loads.
Resumo:
This chapter looks at issues of non-stationarity in determining when a transient has occurred and when it is possible to fit a linear model to a non-linear response. The first issue is associated with the detection of loss of damping of power system modes. When some control device such as an SVC fails, the operator needs to know whether the damping of key power system oscillation modes has deteriorated significantly. This question is posed here as an alarm detection problem rather than an identification problem to get a fast detection of a change. The second issue concerns when a significant disturbance has occurred and the operator is seeking to characterize the system oscillation. The disturbance initially is large giving a nonlinear response; this then decays and can then be smaller than the noise level ofnormal customer load changes. The difficulty is one of determining when a linear response can be reliably identified between the non-linear phase and the large noise phase of thesignal. The solution proposed in this chapter uses “Time-Frequency” analysis tools to assistthe extraction of the linear model.
Resumo:
The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia.
Resumo:
The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia
Resumo:
World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.
Resumo:
The objective of this study was to evaluate the feasibility and potential of a hybrid scaffold system in large- and high-load-bearing osteochondral defects repair. The implants were made of medical-grade PCL (mPCL) for the bone compartment whereas fibrin glue was used for the cartilage part. Both matrices were seeded with allogenic bone marrow-derived mesenchymal cells (BMSC) and implanted in the defect (4 mm diameter×5 mm depth) on medial femoral condyle of adult New Zealand White rabbits. Empty scaffolds were used at the control side. Cell survival was tracked via fluorescent labeling. The regeneration process was evaluated by several techniques at 3 and 6 months post-implantation. Mature trabecular bone regularly formed in the mPCL scaffold at both 3 and 6 months post-operation. Micro-Computed Tomography showed progression of mineralization from the host–tissue interface towards the inner region of the grafts. At 3 months time point, the specimens showed good cartilage repair. In contrast, the majority of 6 months specimens revealed poor remodeling and fissured integration with host cartilage while other samples could maintain good cartilage appearance. In vivo viability of the transplanted cells was demonstrated for the duration of 5 weeks. The results demonstrated that mPCL scaffold is a potential matrix for osteochondral bone regeneration and that fibrin glue does not inherit the physical properties to allow for cartilage regeneration in a large and high-load-bearing defect site. Keywords: Osteochondral tissue engineering; Scaffold; Bone marrow-derived precursor cells; Fibrin glue
Resumo:
This paper discusses a new paradigm of real-time simulation of power systems in which equipment can be interfaced with a real-time digital simulator. In this scheme, one part of a power system can be simulated by using a real-time simulator; while the other part is implemeneted as a physical system. The only interface of the physical system with the computer-based simulator is through data-acquisition system. The physical system is driven by a voltage-source converter (VSC)that mimics the power system simulated in the real-time simulator. In this papar, the VSC operates in a voltage-control mode to track the point of common coupling voltage signal supplied by the digital simulator. This type of splitting a network in two parts and running a real-time simulation with a physical system in parallel is called a power network in loop here. this opens up the possibility of study of interconnection o f one or several distributed generators to a complex power network. The proposed implementation is verified through simulation studies using PSCAD/EMTDC and through hardware implementation on a TMS320G2812 DSP.
Resumo:
Fault tree analysis (FTA) is presented to model the reliability of a railway traction power system in this paper. First, the construction of fault tree is introduced to integrate components in traction power systems into a fault tree; then the binary decision diagram (BDD) method is used to evaluate fault trees qualitatively and quantitatively. The components contributing to the reliability of overall system are identified with their relative importance through sensitivity analysis. Finally, an AC traction power system is evaluated by the proposed methods.
Resumo:
A high peak power demand at substations will result under Moving Block Signalling (MBS) when a dense queue of trains begins to start from a complete stop at the same time in an electrified railway system. This may cause the power supply interruption and in turn affect the train service substantially. In a recent study, measures of Starting Time Delay (STD) and Acceleration Rate Limit (ARL) are the possible approaches to reduce the peak power demand on the supply system under MBS. Nevertheless, there is no well-defined relationship between the two measures and peak power demand reduction (PDR). In order to attain a lower peak demand at substations on different traffic conditions and system requirements, an expert system is one of the possible approaches to procure the appropriate use of peak demand reduction measures. The main objective of this paper is to study the effect of the train re-starting strategies on the power demand at substations and the time delay suffered by the trains with the aid of computer simulation. An expert system is a useful tool to select various adoptions of STD and ARL under different operational conditions and system requirements.
Resumo:
Abstract Computer simulation is a versatile and commonly used tool for the design and evaluation of systems with different degrees of complexity. Power distribution systems and electric railway network are areas for which computer simulations are being heavily applied. A dominant factor in evaluating the performance of a software simulator is its processing time, especially in the cases of real-time simulation. Parallel processing provides a viable mean to reduce the computing time and is therefore suitable for building real-time simulators. In this paper, we present different issues related to solving the power distribution system with parallel computing based on a multiple-CPU server and we will concentrate, in particular, on the speedup performance of such an approach.
Resumo:
This book (256 pages, written in Korean) is a critical essay that reviews, questions, and criticises Korean and Eastern immigrants’ thinking and behaviour styles in Australia from their cultural perspectives, and discuss and proposes a creative cultural dimension for their better life in a multicultural context. Multiculturalism is not supportive of Eastern cultures because of individualistic collection of cultures, while transculturalism facilitates nurture of their culture in a community-oriented way within multicultural circumstances. Korean and Eastern immigrants, sharing oriental cultural systems and values, should approach to the Australian multicultural context with transculturalism which allows creating new cultural values in collaboration with and by participation into local communities. ------------------------------------------------------------ Many Eastern immigrants live in their own ethnic communities without or less interacting with Australian (communities). The author defines this phenomenon as “reverse immigration”. Reverse immigration refers to re-immigrating to their ethnic community in Australia or to their birth country despite they did not anticipate that this would happen to them before immigration to Australia. The author argues that Easterners’ collectivistic culture often devalues individuality and vice versa. Cultural clash between West and East often forces the immigrants to choose reverse immigration because of their lack of understanding of Western culture and their cultural characteristics such as low individuality, high power distance, and high uncertainty avoidance. For example, a vague boundary between individualist and collectivist in a collectivistic context (within their ethnic group) often leads to maladjustment to local communities and enhancement of cultural conservatism. The author proposes that the cultural clash can be overcome by cross-cultural activities named “transculturalism”. To Eastern immigrants, transculturalism can be achieved by acculturation of their two predominant cultures, the third-person perspective and generalised others. In a multicultural context, the former refers to the ability to share another person's feelings and emotions as if they were your own, and the latter does the ability to manage community and public expectations. When both cultural values are used for quality interactions between East and West, they allow Eastern immigrants to be more creative and critical and Australian to be more socially inclusive and culturally tolerant. With these discussions, the author discusses cultural differences throughout the book with four topics (chapters) and proposes transculturalism as a solution to the reverse immigration. ------------------------------------------------------------ Chapter 1 criticises Koreans’ attitudes and methods towards learning English that is less pragmatic and practical, but more likely to be a scholarly study. The author explains that Koreans’ non-pragmatic towards learning English has been firmly built based on their traditional systems and values that Koreans view English as a discipline and an aim of academic achievements rather than a means of communication. Within their cultural context, English can be perceived as more than a language, but something like vastly superior to their language and culture. Their collectivistic culture regards English as an unreachable and heterogeneous one that may threaten their cultural identity, so that “scholarly studying” is only the way to achieve (not learn) it. This discourages the immigrants to engage and involve in daily dialogues by “using” English as a second language. The author further advises the readers to be aware of Eastern collectivistic culture in communication and interaction that sometimes completely reverses private and public topics in a Western context. This leads them to feel that they have no content to talk to natives. ------------------------------------------------------------ Chapter 2 compares between Korea and Australia in terms of their educational systems and values, and proposes how Eastern overseas students can achieve critical and creative thinking within a Western educational setting. Interestingly, this chapter includes an explanation of why Eastern overseas students easily fail assessments including essay writing, oral presentations and discussions. One of the reasons the author explains is that Eastern students are not familiar to criticise others and think creatively, especially when they recognise that their words and ideas may harm the collectivistic harmony. Western educational systems focuses on enhancement of individuality such as self-confidence, self-esteem, and self-expression, while Eastern educational systems foster group-oriented values such as interpersonal relationship, and strong moral and spiritual values. Yet, the author argues that the collectivistic approach to criticism and creativity is often more critical and creative than Western individuals when they know what they are supposed to do for a group (or a community). Therefore, Eastern students need to think their cultural merits and demerits by using an individual perspective rather than generalised others’ perspective. The latter often discourages individual participation in a community, and the generalised others in a Western culture is weaker than Eastern. Furthermore, Western educational systems do not educate students to transform (loose) their individuality to fit into a group or a community. Rather they cultivate individuality for community prosperity. ------------------------------------------------------------ Chapter 3 introduces various cases of reverse immigration in workplaces that many immigrants return to their country or their ethnic community after many trials for acculturation. Reverse immigration is unexpected and not planned before immigration, so that its emotional embarrassment increases such severe social loneliness. Most Eastern immigrant workers have tried to adjust themselves in this new cultural environment at the early stages of immigration. However, their cultural features of collectivism, high power distance, high uncertainty avoidance, and long-term oriented cultures suppress individual initiative and eliminate the space for experiments in ways of acculturation. The author argues that returning to their ethnic community (physically and psychologically) leads to two significant problems: their distorted parenting and becoming more conservatives. The former leads the first generation of immigrants to pressure their children to pursue extrinsic or materialist values, such as financial success, fame and physical appearance, rather than on intrinsic values, while the latter refers to their isolated conservative characters because of their remoteness from the changes of their own country. The author also warns that their ethnic and religious groups actively strengthens immigrants’ social loneliness and systematically discourages immigrants’ interests and desire to be involving into local communities. The ethnic communities and leaders have not been interacting with Australian local communities and, as a result, are eager to conserve outdated cultural systems values. Even they have a tendency to weed out those people who wish to settle down within Australian local communities. They believe that those people can threaten their community’s survival and continuity. ------------------------------------------------------------ Chapter 4 titled multiculturalism argues that Korean and Eastern immigrants should more precisely understand Australia as a multicultural society in a way of collaboratively creating new cultural values. The author introduces multiculturalism with its definitions and history in Australia and argues the limitations of multiculturalism from an Easterner’s perspective. With well known tragedies of the second generations of U.S. immigrants, Cho Seung-Hui, a university student, massacred 32 people on the Virginia Tech before committing suicide and Hidal Hassan, an Army psychiatrist, killed 13 people at Fort Hood and the responses of ethnic community, the author explains that their mental illness may be derived from their parents’ (or ethnic group) culturally isolated attitude and socially static viewpoint of U.S. (Western system and values). The author insists that multiculturalism may restrict Eastern immigrants’ engagement and involvement in local communities. Multiculturalism has been systematically and historically developed based on Western systems and cultural values. In other words, multiculturalism requires high self-confidence and self-esteem that Eastern immigrants less prioritise them. It has been generally known that Easterners put more weight on human relationship than Westerners, but the author claims that this is not true. Within an individualistic culture, Westerners are more interested in building person-to-person connections and relationships. While Easterners are more interested in how individuals can achieve a sense of belonging within a group and a community. Therefore, multiculturalism is an ideology which forces Eastern immigrants to discard their strong desire to be part of a group and does not give a sense of belonging. In a consequence, the author advises that Eastern immigrants should aim towards “transculturalism” which allows them to actively participate in and contribute to their multicultural community. Transculturalism does not ask Easterners to discard their cultural values, but enables them to be a collectivistic individualist (a community leader) who is capable of developing new cultural values in a more creative and productive way. Furthermore, transculturalism encourages Western Australians in a multicultural context to collaborate with ethnic minorities to build a better community.