254 resultados para light-cone gauge


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Fire safety of light gauge cold-formed steel frame (LSF) stud walls is significant in the design of buildings. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and real design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and literature review. The developed models were then validated by comparing their results with available fire test results. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire safety of light gauge cold-formed steel frame (LSF) wall systems is significant to the build-ing design. Gypsum plasterboard is widely used as a fire safety material in the building industry. It contains gypsum (CaSO4.2H2O), Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Recently a new composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of LSF walls. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties of gypsum plaster-board, insulation materials and steel were used. The developed models were then validated by comparing their results with fire test results. This paper presents the details of the developed finite element models of non-load bearing LSF wall panels and the thermal analysis results. It has shown that finite element models can be used to simulate the thermal behaviour of LSF walls with varying configurations of insulations and plasterboards. The results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection. Effects of real fire conditions are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel stud walls are an important component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin-walled steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of these wall systems while past research showed contradicting results about the benefits of cavity insulation. This research proposed a new LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating of walls. Full scale fire tests were conducted using both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. Eleven full scale load bearing wall specimens were tested to study the thermal and structural performances of the load bearing wall assemblies under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls while also providing good explanations and supporting test data to overcome the incorrect industry assumptions about cavity insulation. Tests demonstrated that the use of external insulation in a composite panel form enhanced the thermal and structural performances of stud walls and increased their fire resistance rating significantly. This paper presents the details of the full scale fire tests of load-bearing wall assemblies lined with plasterboards and different types of insulation under varying load ratios. Test results including the temperature and deflection profiles of walls measured during the fire tests will be presented along with their failure modes and failure times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire safety of buildings has been recognised as very important by the building industry and the community at large. Traditionally, increased fire rating is provided by simply adding more plasterboards to light gauge steel frame (LSF) walls, which is inefficient. Many research studies have been undertaken to investigate the thermal behaviour of traditional LSF stud wall systems under standard fire conditions. However, no research has been undertaken on the thermal behaviour of LSF stud walls using the recently proposed composite panel. Extensive fire testing of both non-load bearing and load bearing wall panels was conducted in this research based on the standard time-temperature curve in AS1530.4. Three groups of LSF wall specimens were tested with no insulation, cavity insulation and the new composite panel based on an external insulation layer between plasterboards. This paper presents the details of this experimental study into the thermal performance of non-load bearing walls lined with various configurations of plasterboard and insulation. Extensive descriptive and numerical results of the tested non-load bearing wall panels given in this paper provide a thorough understanding of their thermal behaviour, and valuable time-temperature data that can be used to validate numerical models. Test results showed that the innovative composite stud wall systems outperformed the traditional stud wall systems in terms of their thermal performance, giving a much higher fire rating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834 (ISO, 1999). The standard time-temperature curve given in ISO 834 (ISO, 1999) originated from the application of wood burning furnaces in the early 1900s. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of LSF walls was undertaken using the developed real fire curves based on Eurocode parametric curves (ECS, 2002) and Barnett’s BFD curves (Barnett, 2002) using both full scale fire tests and numerical studies. It included LSF walls without any insulation, and the recently developed externally insulated composite panel system. This paper presents the details of the numerical studies and the results. It also includes brief details of the development of real building fire curves and experimental studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Fire resistance has become an important part in structural design due to the ever increasing loss of properties and lives every year. Conventionally the fire rating of load bearing Light gauge Steel Frame (LSF) walls is determined using standard fire tests based on the time-temperature curve given in ISO 834 [1]. Full scale fire testing based on this standard time-temperature curve originated from the application of wood burning furnaces in the early 1900s and it is questionable whether it truly represents the fuel loads in modern buildings. Hence a detailed fire research study into the performance of LSF walls was undertaken using real design fires based on Eurocode parametric curves [2] and Barnett’s ‘BFD’ curves [3]. This paper presents the development of these real fire curves and the results of full scale experimental study into the structural and fire behaviour of load bearing LSF stud wall systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gypsum plasterboards are commonly used to protect the light gauge steel-framed walls in buildings from fires. Single or multiple plasterboards can be used for this purpose, whereas recent research has proposed a composite panel with a layer of external insulation between two plasterboards. However, a good understanding of the thermal behaviour of these plasterboard panels under fire conditions is not known. Therefore, 15 small-scale fire tests were conducted on plasterboard panels made of 13 and 16 mm plasterboards and four different types of insulations with varying thickness and density subject to standard fire conditions in AS 1530.4. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effects of interfaces between adjacent plasterboards. Effects of using external insulations such as glass fibre, rockwool and cellulose fibre were also determined. The thermal performance of composite panels developed from different insulating materials of varying densities and thicknesses was examined and compared. This paper presents the details of the fire tests conducted in this study and their valuable time–temperature data for the tested plasterboard panels. These data can be used for the purpose of developing and validating accurate thermal numerical models of these panels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional shading design principles guide the vertical and horizontal orientation of fins, louvres and awnings being applied to orthogonal planar façades. Due to doubly curved envelopes characterising many contemporary designs, these rules of thumb are now not always applicable. Operable blinds attempt to regulate the fluctuating luminance of daylight and aid in shading direct sunlight. Mostly they remain closed, as workers are commonly too preoccupied to continually adjust them so a reliance on electrically powered lights remains a preference. To remedy these problems, the idea of what it is to sustainable enclose space is reconsidered through the geometric and kinetic optimisation of a parametric skin, with sunlight responsive modules that regulate interior light levels. This research concludes with an optimised design and also defines some unique metrics to gauge the design’s performance in terms of, the amount of exterior unobstructed view, its ability to shade direct sunlight and, its daylight glare probability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Subjects with atrial fibrillation are at risk of thromboembolic events. The vitamin K antagonists (e.g., warfarin) are useful at preventing coagulation in atrial fibrillation, but are difficult to use. One of the FXa inhibitors, oral apixaban, has been tested as an anticoagulant in atrial fibrillation. Areas covered: In ARISTOTLE (Apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation) apixaban was compared to warfarin in subjects with atrial fibrillation, and shown to cause a lower rate of stroke or systemic embolism and of major bleeding, than warfarin. In the AVERROES (Apixaban versus acetylsalicylic acid [ASA] to prevent stroke in atrial fibrillations patients who have failed or are unsuitable for vitamin K antagonist treatment) trial, stroke or systemic embolism occurred less often with apixaban than aspirin, whereas the occurrence of major bleeding was similar in the groups. Expert opinion: Apixaban is much easier for subjects with atrial fibrillation to use than warfarin, as it does not require regular monitoring by a health professional, with dosage adjustment. In addition to replacing warfarin in subjects with atrial fibrillation who are unable or not prepared to use warfarin, apixaban has the potential to replace warfarin more widely in the prevention of thromboembolism in subjects with atrial fibrillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: There are some limited reports, based on questionnaire data, which suggest that outdoor activity decreases the risk of myopia in children and may offset the myopia risk associated with prolonged near work. The aim of this study was to explore the relationship between near work, indoor illumination, daily sunlight and ultraviolet (UV) exposure in emmetropic and myopic University students, given that University students perform significant amounts of near work and as a group have a high prevalence of myopia. Methods: Participants were 35 students, aged 17 to 25 years who were classified as being emmetropic (n=13), or having stable (n=12) or progressing myopia (n=10). During waking hours on three separate days participants wore a light sensor data logger (HOBO) and a polysulphone UV dosimeter; these devices measured daily illuminance and accumulative UV exposure respectively; participants also completed a daily activity log. Results: No significant between group differences were observed for average daily illuminance (p=0.732), number of hours per day spent in sunlight (p=0.266), outdoor shade (p=0.726), bright indoor/dim outdoor light (p=0.574) or dim room illumination (p=0.484). Daily UV exposure was significantly different across the groups (p=0.003); with stable myopes experiencing the greatest UV exposure (versus emmetropes p=0.002; versus progressing myopes p=0.004). Conclusions: The current literature suggests there is a link between myopia protection and spending time outdoors in children. Our data provides some evidence of this relationship in young adults and highlights the need for larger studies to further investigate this relationship longitudinally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed mesopic rod and S-cone interactions in terms of their contributions to the blue-yellow opponent pathway. Stimuli were generated using a 4-primary colorimeter. Mixed rod and S-cone modulation thresholds (constant L-, M-cone excitation) were measured as a function of their phase difference. Modulation amplitude was equated using threshold units and contrast ratios. This study identified three interaction types: (1) A linear and antagonistic rod:S-cone interaction, (2) probability summation (3) and a previously unidentified mutual nonlinear reinforcement. Linear rod:S-cone interactions occur within the blue-yellow opponent pathway. Probability summation involves signaling by different post-receptoral pathways. The origin of the nonlinear reinforcement is possibly at the photoreceptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment plans for conformal radiotherapy are based on an initial CT scan. The aim is to deliver the prescribed dose to the tumour, while minimising exposure to nearby organs. Recent advances make it possible to also obtain a Cone-Beam CT (CBCT) scan, once the patient has been positioned for treatment. A statistical model will be developed to compare these CBCT scans with the initial CT scan. Changes in the size, shape and position of the tumour and organs will be detected and quantified. Some progress has already been made in segmentation of prostate CBCT scans [1],[2],[3]. However, none of the existing approaches have taken full advantage of the prior information that is available. The planning CT scan is expertly annotated with contours of the tumour and nearby sensitive objects. This data is specific to the individual patient and can be viewed as a snapshot of spatial information at a point in time. There is an abundance of studies in the radiotherapy literature that describe the amount of variation in the relevant organs between treatments. The findings from these studies can form a basis for estimating the degree of uncertainty. All of this information can be incorporated as an informative prior into a Bayesian statistical model. This model will be developed using scans of CT phantoms, which are objects with known geometry. Thus, the accuracy of the model can be evaluated objectively. This will also enable comparison between alternative models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing interest in the use of megavoltage cone-beam computed tomography (MV CBCT) data for radiotherapy treatment planning. To calculate accurate dose distributions, knowledge of the electron density (ED) of the tissues being irradiated is required. In the case of MV CBCT, it is necessary to determine a calibration-relating CT number to ED, utilizing the photon beam produced for MV CBCT. A number of different parameters can affect this calibration. This study was undertaken on the Siemens MV CBCT system, MVision, to evaluate the effect of the following parameters on the reconstructed CT pixel value to ED calibration: the number of monitor units (MUs) used (5, 8, 15 and 60 MUs), the image reconstruction filter (head and neck, and pelvis), reconstruction matrix size (256 by 256 and 512 by 512), and the addition of extra solid water surrounding the ED phantom. A Gammex electron density CT phantom containing EDs from 0.292 to 1.707 was imaged under each of these conditions. The linear relationship between MV CBCT pixel value and ED was demonstrated for all MU settings and over the range of EDs. Changes in MU number did not dramatically alter the MV CBCT ED calibration. The use of different reconstruction filters was found to affect the MV CBCT ED calibration, as was the addition of solid water surrounding the phantom. Dose distributions from treatment plans calculated with simulated image data from a 15 MU head and neck reconstruction filter MV CBCT image and a MV CBCT ED calibration curve from the image data parameters and a 15 MU pelvis reconstruction filter showed small and clinically insignificant differences. Thus, the use of a single MV CBCT ED calibration curve is unlikely to result in any clinical differences. However, to ensure minimal uncertainties in dose reporting, MV CBCT ED calibration measurements could be carried out using parameter-specific calibration measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic synthesis using visible light is a desirable chemical process because of its potential to utilize sunlight. Supported gold nanoparticles (Au-NPs) were found to be efficient photocatalysts and the effects of the supports were identified including CeO2, TiO2, ZrO2, Al2O3, and zeolite Y. In particular Au/CeO2 exhibited the high catalytic activity to reduce nitroaromatics to azo compounds, hydrogenate azobenzene to hydroazobenzene, reduce ketones to alcohols, and deoxygenate epoxides to alkenes at ambient temperatures, under irradiation of visible light (or simulated sunlight). The reac-tive efficiency depends on two primary factors: one is the light adsorption of catalysts and another is the driving ability of catalysts corresponding to the reactants. The light absorption by Au-NPs is due to surface plasmon resonance effect or inter-band electron transition; this is related to the reduction ability of the photocatalysts. Irradiation with shorter wavelengths can excite the conduction electrons in Au-NPs to higher energy levels and as a result, induce reduction with more negative reduction potentials. It is known when irradiated with light the Au-NPs can abstract hydrogen from isopropanol forming Au-H species on the Au-NP surface. Hence, we proposed that the active Au-H species will react with the N=O, N=N, C=O double bonds or epoxide bonds, which are weakened by the interaction with the excited electrons in the Au-NPs, and yield the final reductive products. The reacting power of the Au-H species depends on the energy of the excited electrons in Au-NPs: the higher the electronic energy, the stronger the reduction ability of the Au-H species. This finding demonstrates that we can tune the reduction ability of the photocatalysts by manipulating the irradiation wavelength.